Biomass Exchange – Key to Success in Biomass Projects

Biomass exchange is emerging as a key factor in the progress of biomass energy sector in a particular country. The supply chain management in any biomass project is a big management conundrum. The complexity deepens owing to the large number of stages which encompass the entire biomass value chain. It starts right from biomass resource harvesting and goes on to include biomass collection, processing, storage and eventually its transportation to the point of ultimate utilization.

Owing to the voluminous nature of the resource, its handling becomes a major issue since it requires bigger modes of logistics, employment of a larger number of work-force and a better storage infrastructure, as compared to any other fuel or feedstock. Not only this their lower energy density characteristic, makes it inevitable for the resource to be first processed and then utilized for power generation to make for better economics.

All these problems call for a mechanism to strengthen the value chain. This can be done by considering the following:

  • Assuring a readily available market for the resource providers or the producers
  • Assuring the project developers of a reliable chain and consistent feedstock availability
  • Awareness to the project developer of the resources in closest proximity to the plant site
  • Assurance to the project developer of the resource quality
  • Timely pick-up and drop of resource
  • Proper fuel preparation as per technology requirements
  • Removal of intermediaries involved in the process – to increase value for both, the producers as well as the buyers
  • No need for long term contracts (Not an obligation)
  • Competitive fuel prices
  • Assistance to producers in crop management

The figure below gives a general understanding of how such a model could work, especially in the context of developing nations where the size of land holdings is usually small and the location of resources is scattered, making their procurement a highly uneconomic affair. This model is commonly known as Biomass Exchange

In such a model, the seed, fertilizer shops and other local village level commercial enterprises could be utilized as an outreach or marketing platform for such a service.  Once the producer approves off the initial price estimate, as provided by these agencies, he could send a sample of the feedstock to the pre-deputed warehouses for a quality check.

These warehouses need to be organized at different levels according to the village hierarchy and depending on the size, cultivated area and local logistic options available in that region. On assessing the feedstock sample’s quality, these centers would release a plausible quote to the farmer after approving which, he would be asked to supply the feedstock.

On the other hand, an entity in need of the feedstock would approach the biomass exchange, where it would be appraised of the feedstock available in the region near its utilization point and made aware of the quantity and quality of the feedstock. The entity would then quote a price according to its suitability which would be relayed to the primary producer.

An agreement from both the sides would entail the placement of order and the feedstock’s subsequent processing and transportation to the buyer’s gate. The pricing mechanisms could be numerous ranging from, fixed (according to quality), bid-based or even market-driven.


The hurdles could be in the form of the initial resource assessment which could in itself be a tedious and time consuming exercise. Another roadblock could be in the form of engaging the resource producers with such a mechanism. Since these would usually involve rural landscapes, things could prove to be a little difficult in terms of implementation of initial capacity building measures and concept marketing.


The benefits of  a biomass exchange are enumerated below:

  • Support to the ever increasing power needs of the country
  • Promotion of biomass energy technologies
  • Development of rural infrastructure
  • Increased opportunities for social and micro-entrepreneurship
  • Creation of direct and indirect job opportunities
  • Efficient utilization of biomass wastes
  • Potential of averting millions of tonnes of GHGs emissions


In India alone, there has been several cases where biomass power projects of the scale greater than 5 MW are on sale already, even with their power purchase agreements still in place. Such events necessitate the need to have a mechanism in place which would further seek the promotion of such technologies.

Biomass Exchange is an attractive solution to different problems afflicting biomass projects, at the same time providing the investors and entrepreneurs with a multi-million dollar opportunity. Although such a concept has been in existence in the developed world for a long time now, it has not witnessed many entrepreneurial ventures in developing nations where the need to strengthen the biomass supply chain becomes even more necessary.

However, one needs to be really careful while initiating such a model since it cannot be blindly copied from Western countries owing to entirely different land-ownership patterns, regional socio-political conditions and economic framework. With a strong backup and government support, such an idea could go a long way in strengthening the biomass supply chain, promotion of associated clean energy technologies and in making a significant dent in the present power scenario in the developing world.

Rationale for Biomass Supply Chain

Biomass resources have been in use for a variety of purposes since ages. The multiple uses of biomass includes usage as a livestock or for meeting domestic and industrial thermal requirements or for the generation of power to fulfill any electrical or mechanical needs. One of the major issues, however, associated with the use of any biomass resources is its supply chain management. The resource being bulky, voluminous and only seasonally available creates serious hurdles in the reliable supply of the feedstock, regardless of its application. The idea is thus to have something which plugs in this gap between the biomass resource availability and its demand.

The Problem

The supply chain management in any biomass based project is nothing less than a big management conundrum. The complexity deepens owing to the large number of stages which encompass the entire biomass value chain. It starts right from the resource harvesting and goes on to include the resource collection, processing, storage and eventually its transportation to the point of ultimate utilization.

Owing to the voluminous nature of the resource, its handling becomes a major issue since it requires bigger modes of logistics, employment of a larger number of work-force and a better storage infrastructure, as compared to any other fuel or feedstock. Not only this their lower energy density characteristic, makes it inevitable for the resource to be first processed and then utilized for power generation to make for better economics.

All these hassles associated with such resources, magnify the issue of their utilization when it comes to their supply chain. The seasonal availability of most of the biomass resources, alternative application options, weather considerations, geographical conditions and numerous other parameters make it difficult for the resource to be made consistently available throughout the year. This results in poor feedstock inputs at the utilization point which ends up generating energy in a highly erratic and unreliable manner.

The Solution

Although most of the problems discussed above, are issues inherently associated with the usage of biomass resources, they can be curtailed to a larger extent by strengthening the most important loophole in such projects – The Biomass Resource Supply Chain.

World over, major emphasis has been laid in researching upon the means to improve the efficiencies of such technologies. However, no significant due diligence has been carried out in fortifying the entire resource chain to assure such plants for a continuous resource supply.

The usual solution to encounter such a problem is to have long term contracts with the resource providers to not only have an assured supply but also guard the project against unrealistic escalations in the fuel costs. Although, this solution has been found to be viable, it becomes difficult to sustain such contracts for longer duration since these resources are also susceptible to numerous externalities which could be in the form of any natural disaster, infection from pests or any other socio-political or geographical disturbances, which eventually lead to an increased burden on the producers.

Overview of Biomass Handling Equipment

The physical handling of biomass fuels during collection or at a processing plant can be challenging to conveying equipment designers, particularly for solid biomass. Biomass fuels tend to vary with density, moisture content and particle size (some even being stringy in nature) and can also be corrosive. Therefore biomass fuel handling equipment is often a difficult part of a plant to adequately design, maintain and operate.

The design and equipment choice for the fuel handling system, including preparation and refinement systems is carried out in accordance with the plant configuration. This is of special importance when the biomass is not homogeneous and contains impurities, typically for forest and agro residues. Some of the common problems encountered have been the unpopular design and undersized fuel handling, preparation and feeding systems. The fuel handling core systems and equipment are dependent on both the raw fuel type and condition as well as on the conversion/combustion technology employed. The core equipments in a biomass power plant include the following:

  1. Fuel reception
  2. Fuel weighing systems
  3. Receiving bunkers
  4. Bunker discharge systems (stoker, screw, grab bucket)
  5. Fuel preparation
  6. Fuel drying systems
  7. Crushers
  8. Chippers
  9. Screening systems
  10. Shredding systems
  11. Grinding systems (for pulverised fuel burners)
  12. Safety systems (explosion relieve, emergency discharge, fire detections etc)
  13. Fuel transport and feeding
  14. Push floors
  15. Belt feeders
  16. Conveyers, Elevators
  17. Tube feeders
  18. Fuel hoppers and silos (refined fuel)
  19. Hopper, bunker and silo discharge
  20. Feeding stokers
  21. Feeding screws
  22. Rotary valves

To enable any available biomass resource to be matched with the end use energy carrier required (heat, electricity or transport fuels) the correct selection of conversion technologies is required. Since the forms in which biomass can be used for energy are diverse, optimal resources, technologies and entire systems will be shaped by local conditions, both physical and socio-economic in nature. Since the majority of people in developing countries will continue using biomass as their primary energy source well into the next century, it is of critical importance that biomass-based energy truly can be modernized to yield multiple socioeconomic and environmental benefits.

How is Biomass Transported

Transporting biomass fuel to a power plant is an important aspect of any biomass energy project. Because a number of low moisture fuels can be readily collected and transported to a centralized biomass plant location or aggregated to enhance project size, this opportunity should be evaluated on a case-by-case basis.

It will be a good proposition to develop biomass energy plants at the location where the bulk of the agricultural waste stream is generated, without bearing the additional cost of transporting waste streams. Effective capture and use of thermal energy at the site for hot water, steam, and even chilled water requirements raises the energy efficiency of the project, thereby improving the value of the waste-to-energy project.

Important Factors

  • The maximum rate of biomass supply to the conversion facility.
  • The form and bulk density of biomass.
  • The hauling distance for biomass transportation to the processing plant.
  • Transportation infrastructure available between the points of biomass dispatch and processing plant

Transportation is primarily concerned with loading and unloading operation and transferring biomass from pre-processing sites to the main processing plant or biorefinery. Truck transport and for a few cases train transport may be the only modes of transport. Barge and pipeline transport and often train transport involve truck transport. Trucks interface with trains at loading and unloading facilities of a depot or processing facility. Barge and pipeline require interfacing with train and/or truck transport at major facilities either on land or at the shores.

Physical form and quality of biomass has the greatest influence on the selection of equipment for the lowest delivered cost possible. A higher bulk density will allow more mass of material to be transported per unit distance. Truck transport is generally well developed, is usually cheapest mode of transport but it becomes expensive as travel distance increases. Pipeline biomass transport is the least known technology and may prove to be the cheapest and safest mode of transport in the near future.

A biomass freight train in England

Transportation costs of low-density and high-moisture agricultural residues straw are a major constraint to their use as an energy source. As a rule of thumb, transportation distances beyond a 25–50- km radius (depending on local infrastructure) are uneconomical. For long distances, agricultural residues could be compressed as bales or briquettes in the field, rendering transport to the site of use a viable option.

Greater use of biomass and larger?scale conversion systems demand larger?scale feedstock handling and delivery infrastructure. To accommodate expansion in feedstock collection and transportation, production centres can be established where smaller quantities of biomass are consolidated, stored, and transferred to long?distance transportation systems, in much the same way that transfer stations are used in municipal waste handling. Pre?processing equipment may be used to densify biomass, increasing truck payloads and reducing transportation costs over longer haul distances.

Bioethanol: Challenges in India

bioethanol-indiaGlobal demand for fuel efficiency, environmental quality and energy security have elicited global attention towards liquid biofuels, such as bioethanol and biodiesel. Around the world, governments have introduced various policy measurements, mandatory fuel blending programmes, incentives for flex-fuel vehicles and agricultural subsidies for the farmers. In India, the government launched Ethanol Blended Petrol (EBP) programme in January 2013 for 5% ethanol blended petrol. The policy had significant focus on India’s opportunity to agricultural and industrial sectors with motive of boosting biofuel (bioethanol and biodiesel) usage and reducing the existing dependency on fossil fuel.

The Government of India initiated significant investments in improving storage and blending infrastructure. The National Policy on Biofuels has set a target of 20% blending of biofuel by 2017. However, India has managed to achieve only 5% by September 2016 due to certain technical, market and regulatory hurdles.

In India, sugarcane molasses is the major resource for bioethanol production and inconsistency of raw material supply holds the major liability for sluggish response to blending targets.  Technically speaking, blend wall and transportation-storage are the major challenges towards the biofuel targets. Blending wall is the maximum percent of ethanol that can be blended to fuel without decreasing the fuel efficiency.

Various vehicles are adaptable to various blending ratio based on the flexibility of engines. The technology for the engine modification for flex fuel is not new but making the engines available in India along with the supply chain and calibrating the engine for Indian conditions is the halting phase. The commonly used motor vehicles in the country are not effectual with flex fuel.

Sugarcane molasses is the most common feedstock for bioethanol production in India

Sugarcane molasses is the most common feedstock for bioethanol production in India

Ethanol being a highly flammable liquid marks obligatory safety and risk assessment measures during all phases of production, storage and transportation. The non-uniform distribution of raw material throughout the country, demands a compulsory transportation and storage, especially inter-state movement, encountering diverse climatic and topographic conditions.

Major ethanol consumers in India are potable liquor sector (45%), alcohol based chemical industry (40%), the rest for blending and other purposes. The yearly profit elevation in major sectors is a dare to an economical ethanol supply for Ethanol Blending Programme. Drastic fluctuation in pricing of sugar cane farming and sugar milling resulted to huge debt to farmers by mill owners. Gradually the farmers shifted from sugarcane cultivation other crops.

Regulatory and policy approaches on excise duty on storage and transportation of ethanol and pricing strategy of ethanol compared to crude oil are to be revised and implemented effectively. Diversifying the feedstocks (especially use of lignocellulosic biomass) and advanced technology for domestic ethanol production in blending sectors are to be fetched out from research laboratories to commercial scale. Above all the knowledge of economic and environmental benefits of biofuel like reduction in pollutants and import bills and more R&D into drop-in biofuels, need to be amplified for the common man.

Biomass Storage Methods

Sufficient storage for biomass is necessary to accommodate seasonality of production and ensure regular supply to the biomass utilization plant. The type of storage will depend on the properties of the biomass, especially moisture content. For high moisture biomass intended to be used wet, such as in fermentation and anaerobic digestion systems, wet storage systems can be used, with storage times closely controlled to avoid excessive degradation of feedstock. Storage systems typically used with dry agricultural residues should be protected against spontaneous combustion and excess decomposition, and the maximum storage moisture depends on the type of storage employed.

Moisture limits must be observed to avoid spontaneous combustion and the emission of regulated compounds. Cost of storage is important to the overall feasibility of the biomass enterprise. In some cases, the storage can be on the same site as the source of the feedstock. In others, necessary volumes can only be achieved by combining the feedstock from a number of relatively close sources. Typically, delivery within about 50 miles is economic, but longer range transport is sometimes acceptable, especially when disposal fees can be reduced.

Storage of biomass fuels is expensive and increases with capacity.

Agricultural residues such as wheat straw, rice husk, rice straw and corn stover are usually spread or windrowed behind the grain harvesters for later baling. Typically these residues are left in the field to air dry to moisture levels below about 14% preferred for bales in stacks or large piles of loose material. After collection, biomass may be stored in the open or protected from the elements by tarps or various structures. Pelletizing may be employed to increase bulk density and reduce storage and transport volume and cost.

Biomass Storage Options

  • Feedstock is hauled directly to the plant with no storage at the production site.
  • Feedstock is stored at the production site and then transported to the plant as needed.
  • Feedstock is stored at a collective storage facility and then transported to the plant from the intermediate storage location.

Biomass Storage Systems

The type of biomass storage system used at the production site, intermediate site, or plant can greatly affect the cost and the quality of the fuel. The most expensive storage systems, no doubt, are the most efficient in terms of maintaining the high fuel quality. Typical storage systems, ranked from highest cost to lowest cost, include:

  • Enclosed structure with crushed rock floor
  • Open structure with crushed rock floor
  • Reusable tarp on crushed rock
  • Outside unprotected on crushed rock
  • Outside unprotected on ground
  • Subterranean

The storage of biomass is often necessary due to its seasonal production versus the need to produce energy all year round. Therefore to provide a constant and regular supply of fuel for the plant requires either storage or multi-feedstocks to be used, both of which tend to add cost to the system.

Reducing the cost of handling and stable storage of biomass feedstocks are both critical to developing a sustainable infrastructure capable of supplying large quantities of biomass to biomass processing plants. Storage and handling of biomass fuels is expensive and increases with capacity. The most suitable type of fuel store for solid biomass fuel depends on space available and the physical characteristics of the fuel.