A Glance at Biggest Dumpsites in Nigeria

Waste dumping is the predominant method for solid waste disposal in developing countries worldwide, and Nigeria is no exception. Nigeria is home to six of the biggest dumpsites in Africa, according to Waste Atlas 2014 report on World’s 50 Biggest Dumpsites published by D-Waste. These dumpsites are located in three most important cities in Nigeria namely, Lagos, Port Harcourt and Ibadan.

Let us have a quick look at these notorious waste dumps:

Olusosun

Olusosun is the largest dumpsite not only in Lagos but in Nigeria and receives about 2.1 million tonnes of waste annually comprising mostly of municipal solid waste, construction waste, and electronic waste (e-waste). The dumpsite covers an area of about 43 hectares and it is 18 meters deep.

The dumpsite has been in existence since 1992 and has housed about 24.5 million tonnes of waste since then. A population of about 5 million people lives around 10km radius from the site and numerous health problems like skin irritation, dysentery, water-related diseases, nausea etc. have been reported by residents living around 3km radius from the site.

Solous 2

It is located in Lagos and occupies around 8 hectares of land along Lasu-Iba road. The dumpsite receives about 820,000 tonnes of waste annually and has since its existence in 2006 accepted around 5.8 million tonnes of MSW.

Solous is just 200 meters away from the nearest dwellings and almost 4 million people live within 10km radius from the site. Due to the vulnerable sand formation of the area, leachate produced at the dumpsite flows into groundwater causing its contamination.

Epe

Epe dumpsite also in Lagos occupies about 80 hectares of land. The dumpsite was opened in 2010 and has an annual input of 12,000 tonnes of MSW. Epe is the dumpsite which the Lagos State government is planning to upgrade to an engineered landfill and set to replace Olusosun dumpsite after its closure.

Since its existence, it has received about 47,000 tonnes of waste and it is just 500 meters away from the nearest settlement. The dumpsite is also just 2km away from Osogbo River and 7km away from Lekki Lagoon.

Awotan (Apete)

The dumpsite is located in Ibadan and has been in existence since 1998 receiving 36,000 tonnes of MSW annually. It covers an area of 14 hectares and already has in place almost 525,000 tonnes of waste.

The dumpsite is close to Eleyele Lake (2.5km away) and IITA Forest Reserve (4.5km away). The nearest settlement to the dumpsite is just 200 meters away and groundwater contamination has been reported by nearby residents.

Lapite

Lapite dumpsite is also located in Ibadan occupies an area of 20 hectares receiving around 9,000 tonnes of MSW yearly. Since its existence in 1998, it has housed almost 137,000 tonnes of MSW. It is 9km away from IITA Forest Reserve and surrounded by vegetations on both sides of the road since the dumpsite is directly opposite a major road.

Olusosun is the largest dumpsite in Nigeria

The nearest settlement is about 2km away but due to the heavy metals present in the leachate produced in the waste dump, its leakage poses a great threat to groundwater and biodiversity in the area.

Eneka

It is located in Port Harcourt, the commercial hub of South-South, Nigeria along Igwuruta/Eneka road and 9km from Okpoka River and Otamiri River. It receives around 45,600 tonnes of MSW annually and already has about 12 million tonnes of waste in place.

The site lies in an area of 5 hectares and it is flooded almost all year round as rainfall in the area exceeds 2,500mm per annum. Due to this and the resultant flow of the flood which would have mixed with dumpsite leachate; groundwater, surface water, and soil contamination affect the 1.2 million people living around 10km radius from the site as the nearest building is just 200 meters away.

Note: Note: The original version of the article was published on Waste Watch Africa website at this link.

Biogas from Agricultural Wastes

The main problem with anaerobic digestion of agricultural wastes is that most of the agricultural residues are lignocellulosic with low nitrogen content. To obtain biogas from agricultural wastes, pre-treatment methods like size reduction, electron irradiation, heat treatment, enzymatic action etc are necessary. For optimizing the C/N ratio of agricultural residues, co-digestion with sewage sludge, animal manure or poultry litter is recommended.

Types of Agricultural Wastes

Several organic wastes from plants and animals have been exploited for biogas production as reported in the literature. Plant materials include agricultural crops such as sugar cane, cassava, corn etc, agricultural residues like rice straw, cassava rhizome, corn cobs etc, wood and wood residues (saw dust, pulp wastes, and paper mill waste)

Others include molasses and bagasse from sugar refineries, waste streams such as rice husk from rice mills and residues from palm oil extraction and municipal solid wastes, etc. However, plant materials such as crop residues are more difficult to digest than animal wastes (manures) because of difficulty in achieving hydrolysis of cellulosic and lignocellulosic constituents.

Codigestion of Crop Wastes

Crop residues can be digested either alone or in co-digestion with other materials, employing either wet or dry processes. In the agricultural sector one possible solution to processing crop biomass is co-digested together with animal manures, the largest agricultural waste stream.

In addition to the production of renewable energy, controlled anaerobic digestion of animal manures reduces emissions of greenhouse gases, nitrogen and odour from manure management, and intensifies the recycling of nutrients within agriculture.

In co-digestion of plant material and manures, manures provide buffering capacity and a wide range of nutrients, while the addition of plant material with high carbon content balances the carbon to nitrogen (C/N) ratio of the feedstock, thereby decreasing the risk of ammonia inhibition.

The gas production per digester volume can be increased by operating the digesters at a higher solids concentration. Batch high solids reactors, characterized by lower investment costs than those of continuously fed processes, but with comparable operational costs, are currently applied in the agricultural sector to a limited extent.

Codigestion offers good opportunity to farmers to treat their own waste together with other organic substrates. As a result, farmers can treat their own residues properly and also generate additional revenues by treating and managing organic waste from other sources and by selling and/or using the products viz heat, electrical power and stabilised biofertiliser.

The Problem of Shipping Wastes

garbage-oceanShipping wastes, long a neglected topic, has started to attract worldwide attention, thanks to the mysterious and tragic disappearance of flight MH370. During the search for MH370, a succession of items floating in the sea were identified as possible wreckage, but later confirmed to be simply pieces of marine litter. Whilst it was large pieces of debris that complicated the search, marine debris of all sizes causes problems for users of marine resources. In the most polluted areas, around 300,000 items of debris can be found in each square kilometre.

Up to 80% of ocean debris originates from land based sources, including beach litter, litter transported by rivers, and discharges of untreated municipal sewage, while ocean based sources (merchant shipping, ferries, cruise liners, fishing and military vessels) account for the remainder. Whilst typically this may be only 20% of marine litter, in areas of high shipping activity such as the North Sea it rises closer to 40%.

Wastes from commercial vessels seems like an area that could be effectively tackled with regulation. However, it is difficult for individual nations or regions to take action when ships operate in international waters and the debris in our oceans is constantly on the move.

So how is it addressed through international legislation?

Law of the Seas

In fact, a good many laws are already in place. The key piece of legislation preventing ‘the disposal of garbage at sea’ is Annex V of the International Convention for the Prevention of Marine Pollution from Ships (MARPOL). Amongst the numerous other relevant laws are the London Convention and Protocol, the Basel Convention, UNCLOS, and the Convention on Biological Diversity.

In addition, many more laws exist at regional and national levels. In the EU, laws directly related to marine debris include the Marine Strategy Framework Directive and the Directive on Port Reception Facilities. Laws indirectly related to marine debris include the Common Fisheries Policy, the Water Framework Directive, the Waste Framework Directive, the Habitats Directive…. The list goes on.

Fathoming the Legislation

Despite the profusion of legislation, the scale of the current and potential problems caused by marine debris, it is clear that implementation and enforcement is lagging behind. Why so?

Ratification

As yet, not all coastal or flag states have ratified international instruments such as MARPOL Annex V. This means that ships registered with a non-ratified state under a‘flag of convenience’ may legally continue to discharge garbage in international waters. However, even if the current suite of international legislation was universally ratified, this would serve to expose the remaining gaps in the framework.

Discharge provisions

MARPOL Annex V includes specific requirements regarding the discharge of different types of waste and location of discharges. For instance, ground food waste can be discharged up to 3 nautical miles from land, but if it is not ground it may only be discharged at a distance of 12 nautical miles or more. Although the discharge of ‘all other garbage including plastics’ is prohibited, compliance relies upon good waste management practices on board vessels.

If waste streams are contaminated, this may result in plastics and other debris being discharged into the sea. The current approach may have been developed to accommodate shipping activity, but in practice it is somewhat confusing and it would perhaps make more sense to issue a blanket ban on discharges.

Scope

Another gap within MARPOL Annex V is the scope of the requirements for ‘garbage management plans’ and ‘garbage record books’. Vessels of 100 gross tonnes or more are required to have a garbage management plan, while vessels of 400 gross tonnes or more are required to have a garbage record book. Smaller vessels are not obliged to comply with the requirements.

Less than 1% of vessels in the world fishing fleet have a gross tonnage of over 100 tonnes, the majority has no obligation to implement and maintain a plan or book; with no planning or record keeping, the risk of illegal disposal is increased. Small fishing vessels may not be considered ‘commercial’ shipping vessels at all – thereby avoiding legislation – but they still contribute towards the problem of marine debris. Most notably, abandoned, lost or otherwise discarded fishing gear has a considerable impact on marine species through ‘ghost fishing’.

Port waste reception facilities

MARPOL Annex V requires the government of each ratified nation to provide facilities at ports for the reception of ship generated residues and garbage that cannot be discharged into the sea. The facilities must be adequate to meet the needs of ships using the port, without causing undue delay to ships. However, MARPOL does not prescribe any set standards or provide for certification. The term ‘adequate’ is instead defined in a qualitative (rather than quantitative) manner in Marine Environment Protection Committee (MEPC) resolution 83 (44).

Furthermore, MARPOL does not set any requirements regarding how waste delivered to port reception facilities should be managed. Only the non-mandatory MEPC resolution 83 (44) requires that facilities should allow for the ultimate disposal of ships’ wastes to take place in an environmentally appropriate way.

Cruise ships

Cruise ships operate in every ocean worldwide, often in pristine coastal waters and sensitive marine ecosystems. Operators provide amenities to their passengers similar to those of luxury resort hotels, generating up to 14 tonnes of waste per day. Worldwide, the cruise industry has experienced a compound annual passenger growth rate of 7% since 1990, and the number of passengers carried is expected to increase from approximately 21 million in 2013 to 23.7 million in 2017.

The majority of current legislation on pollution and ship waste was developed prior to the rapid growth of the cruise market; as a consequence, there is no international legislation addressing the particular issues surrounding pollution and waste management on these vessels.

Although there is not yet data to support this, intuitively the amount of waste produced by ships would be linked to the number of people on board, rather than the vessel’s gross tonnage (which determines whether MARPOL rules apply). If the industry grows as forecasted, cruise ships may be responsible for a significant proportion of waste generated by ships, particularly if unmanned are the future.

To address this, onboard waste management systems that implement zero disposal of solid waste at sea are needed for cruise ships, together with a requirement that they only dispose of their waste at ports with reception facilities adequate to handle the type and volume of waste produced.

Taking the Helm

Where international and regional legislation is found lacking a number of voluntary mechanisms have been devised, indicating an appetite to improve the current waste disposal practices of the shipping industry.

  • The indirect fee system aims to remove the disincentive for ships to dispose of waste at port rather than at sea by including the cost of waste disposal services in the port fees paid by visiting ships, irrespective of whether ships use the facilities
  • The Clean Shipping Index is an easy to use, transparent tool which can be used by cargo owners to evaluate the environmental performance of their sea transport providers. The information is entered on a ship-by-ship basis but is also added to a total carrier fleet score for an overall ranking. Questions on waste relate to garbage handling and crew awareness, and scores can only be obtained for measures that go beyond existing regulations.
  • One commercial container operator (Matson Navigation) has introduced a zero solid waste discharge policy. The ‘greentainer’ programme uses containers specifically designed for storing solid waste. Since 1994, this programme has prevented over 10,000 tonnes of garbage being disposed of at sea.

Currently, international legislation does not properly support a closed loop system for waste management onboard ships. Despite legislative progress and improvements in practice, the monitoring of waste from shipping remains problematic. ‘Policing the seas’ to verify what a ship discharges and where, and whether this follows recommended best practice, remains one of the most challenging aspects of waste management practice at sea, but critical to making the legal framework effective.

The United Nations Environment Programme neatly summarised the issue in 2005:“… marine litter is not a problem which can be solved only by means of legislation, law enforcement and technical solutions. It is a social problem which requires efforts to change behaviours, attitudes, management approaches and multi-sectoral involvement.” 

The limitations of international legislation governing the case of marine litter disposed of at sea do need to be addressed; but unless legislation is accompanied by environmental education for seafarers, and improved monitoring, our attempts to tackle this source of marine litter will remain all at sea.

Note: The article has been republished with the permission of our collaborative partner Isonomia. The original version of the article can be found at this link.

Green Ways to Travel the Globe

According to a recent report, 87% of travelers want to travel more sustainably, but only 39% say that they accomplish the task on most or all occasions. Well, in a world that often focuses so heavily on comfort and convenience, it’s understandable. Many cultures and individuals are certainly making great efforts to lead eco-friendly lives, but many are still left wondering how to make those changes. Read on to explore a wide array of green ways to travel the globe.

Where You Go

Carefully choose your destination. Shorter distances without air travel are ideal, but obviously, that’s not always possible. So, if you’re planning to travel a little further, look into visiting destinations that value sustainability as well. It will be easier if the surrounding culture has the same eco-goals.

Places like Amsterdam are great because they do not rely heavily on vehicular transportation. They stick to bikes and their own two feet most of the time which makes a huge difference. Additionally, make sure that you’re not visiting a destination that is already overwhelmed with tourists and travelers to the point of causing harm. You don’t want to be a part of the problem.

How You Get There

It’s no secret that air travel is a unideal form of transportation right now, but since it is often unavoidable, there are a few small things that can help. First, do your research and choose the most fuel-efficient airline. When you do, book a non-stop, flight and sit economy.

A significant portion of a flight’s emissions is during take-off and landing, and business select or first class is responsible for three times more emissions than economy seating. And in preparation, pack lightly because an aircraft burns more fuel when it is carrying a heavier weight.

But, if you can avoid flying, go for a relaxing train ride. Traveling by train is widely popular in places like Europe and in the United States, you can make it the highlight of your journey.  If you need to rent a car, you can check eco friendly car rental is before you book.

Where You Stay

Look for accommodations that prioritize sustainability. Do your research and look for places that have certifications from a third party, like the Global Sustainable Tourism Council or the Rainforest Alliance. It doesn’t mean that you won’t have the amenities that you may want or need, it just means that they abide by a particular set of global standards that aim for a more “green” operation.

Parting Shot

Even if you aren’t able to choose the ideal location, avoid air travel, or stay at a certifiably eco-friendly hotel, don’t worry. There is still plenty that you can do to lighten the load. Support the local economy, bring a reusable water bottle, take shorter showers and go for ecotourism. Just do the best that you can, and you’ll be on the right track.