Clean Energy Investment Forecast for 2016

renewables-investment-trendsGlobal interest in clean energy technologies reached new heights last year and 2016 promises to be another record-breaker. The year 2015 witnessed installation of more than 121 GW of renewable power plants, a remarkable increase of 30% when compared to 2014. With oil and gas prices tumbling out to unprecedented levels, 2016 should be a landmark year for all clean energy technologies. As per industry trends, solar power is expected to be the fastest-growing renewable power generation technology in 2016, closely followed by wind energy. Among investment hotspots, Asia, Africa and the Middle East will be closely watched this year.

Investment Forecast for 2016

Clean energy is rapidly becoming a part of mainstream investment portfolios all over the world. In 2016, a greater attention will be focused on renewable energy, mainly on account of the Paris Framework and attractive tax credits for clean energy investments in several countries, especially USA.

Infact, the increasing viability of clean energy is emerging as a game-changer for large-scale investors. The falling prices of renewable power (almost 10% per year for solar), coupled with slump in crude oil prices, is pulling global investors away from fossil fuel industry. At the 2016 UN Investor Summit on Climate Risk, former US vice president Al Gore said, “If this curve continues, then its price is going to fall “significantly below the price of electricity from burning any kind of fossil fuel in a few short years”.

There has been an astonishing growth in renewable generation in recent years. “A dozen years ago, the best predictors in the world told us that the solar energy market would grow by 2010 at the incredible rate of 1 GW per year,” said Gore. “By the time 2010 came around, they exceeded that by 17 times over. Last year, it was exceeded by 58 times over. This year, it’s on track to be exceeded by 68 times over. That’s an exponential curve.”

China will continue to dominate solar as well as wind energy sectors

China will continue to dominate solar as well as wind energy sectors

As per industry forecasts, China will continue its dominance of world PV market, followed closely by the US and Japan. Infact, USA is anticipated to overtake Japan as the second largest solar market this year. India, which is developing a highly ambitious solar program, will be a dark horse for cleantech investors. The top solar companies to watch include First Solar, Suntech, Canadian Solar, Trina Solar, Yingli Solar, Sharp Solar and Jinko Solar.

Morocco has swiftly become a role model for the entire MENA. The government’s target of 2GW of solar and 2GW of wind power by 2020 is progressing smoothly. As for solar, the 160MW Noor-1 CSP is already commissioned while Noor-2 and Noor-3 are expected to add a combined 350MW in 2017.

China will continue to lead the global wind energy market in 2016, and is on course to achieve its target of 200 GW of installed wind capacity by 2020. Other countries of interest in the wind sector will be Canada, Mexico, Brazil and South Africa. The major wind turbine manufacturers to watch are Siemens, Vestas, Goldwind, Gamesa and GE.

Conclusion

To sum up, the rapid growth of global renewable energy sector in the past few years is the strongest signal yet for investors and corporations to take the plunge towards green energy and low-carbon growth. As the UN chief Ban Ki-moon famously said, “It marks the beginning of the end of growth built solely on fossil fuel consumption. The once unthinkable has now become unstoppable.”

Food Waste Management – Consumer Behavior and FWDs

food-waste-managementFood waste is a global issue that begins at home and as such, it is an ideal contender for testing out new approaches to behaviour change. The behavioural drivers that lead to food being wasted are complex and often inter-related, but predominantly centre around purchasing habits, and the way in which we store, cook, eat and celebrate food.

Consumer Behavior – A Top Priority

Consumer behaviour is a huge priority area in particular for industrialised nations – it is estimated that some western societies might be throwing away up to a third of all food purchased. The rise of cheap food and convenience culture in recent years has compounded this problem, with few incentives or disincentives in place at producer, retail or consumer level to address this.

While it is likely that a number of structural levers – such as price, regulation, enabling measures and public benefits – will need to be pulled together in a coherent way to drive progress on this agenda, at a deeper level there is a pressing argument to explore the psycho-social perspectives of behaviour change.

Individual or collective behaviours often exist within a broader cultural context of values and attitudes that are hard to measure and influence. Simple one-off actions such as freezing leftovers or buying less during a weekly food shop do not necessarily translate into daily behaviour patterns. For such motivations to have staying power, they must become instinctive acts, aligned with an immediate sense of purpose. The need to consider more broadly our behaviours and how they are implicated in such issues must not stop at individual consumers, but extend to governments, businesses and NGOs if effective strategies are to be drawn up.

Emergence of Food Waste Disposers

Food waste disposer (FWDs), devices invented and adopted as a tool of convenience may now represent a unique new front in the fight against climate change. These devices, commonplace in North America, Australia and New Zealand work by shredding household or commercial food waste into small pieces that pass through a municipal sewer system without difficulty.

The shredded food particles are then conveyed by existing wastewater infrastructure to wastewater treatment plants where they can contribute to the generation of biogas via anaerobic digestion. This displaces the need for generation of the same amount of biogas using traditional fossil fuels, thereby averting a net addition of greenhouse gases (GHG) to the atmosphere.

Food waste is an ideal contender for testing new approaches to behaviour change.

The use of anaerobic digesters is more common in the treatment of sewage sludge, as implemented in the U.K., but not as much in the treatment of food waste. In addition to this, food waste can also replace methanol (produced from fossil fuels) and citric acid used in advanced wastewater treatment processes which are generally carbon limited.

Despite an ample number of studies pointing to the evidence of positive impacts of FWDs, concerns regarding its use still exist, notably in Europe. Scotland for example has passed legislation that bans use of FWDs, stating instead that customers must segregate their waste and make it available curbside for pickup. This makes it especially difficult for the hospitality industry, to which the use of disposer is well suited. The U.S. however has seen larger scale adoption of the technology due to the big sales push it received in the 1950s and 60s. In addition to being just kitchen convenience appliances, FWDs are yet to be widely accepted as a tool for positive environmental impact.

Note: Note: This excerpt is being published with the permission of our collaborative partner Be Waste Wise. The original excerpt and its video recording can be found at this link

The Promise of Algae

This year has witnessed the U.S. Navy debut their “Great Green Fleet,” the first aircraft carrier strike group powered largely by alternative, nonpetroleum-based fuels, the British Ministry of Defence launch a competition to reduce its equipment energy spend and the Pentagon increase its investment in clean-energy technologies, including biofuels development.  Could we be witnessing the start of the end of our reliance on “fossil fuel” petroleum?

In 2010, the MOD spent £628m on equipment energy and, for every 1p per litre rise in the price of fuel, the MOD’s annual equipment energy bill increases by £13m. These rising oil prices have once again positioned biofuels centre stage as a potential substitute to fulfil our global thirst for fuel.

With so many biofuel crops needing to compete for space and freshwater supplies with agriculture, algae are being seen as an ideal, sustainable alternative.  Algae can be grown in areas where crops cannot, but until now, it’s been difficult to achieve the scale needed for commercial  algal production.

Leading international authority on algal biotechnology and head of the Culture Collection of Algae and Protozoa (www.CCAP.ac.uk), Dr John Day, thinks it’s a major step forward.  Dr Day has over 25 years’ experience in biotechnology and applied algal research and comments “Commercial confidence in the scalability of algal biofuel production is an exciting step forward in the journey towards sustainable, economic biofuel production using microalgae.

Algae Cultures at the Scottish Association for Marine Science

“A major driver for the development of algal biofuels has been fuel security and the US Navy has successfully tested nearly all of its ships and aircraft on biofuel blends containing algal oils — including an F-18 fighter flying at twice the speed of sound and a ship moving at 50 knots.”

“Scientists at SAMS and elsewhere have been contributing to the global development of knowledge on algal biofuel. It is this understanding of the biology of these enigmatic microbes and our capacity to successfully cultivate them that will be the key to producing algal biofuels and other products.”

Driven by the desire to reduce reliance on foreign countries for petroleum, and the constant pressure to reduce costs, Governments are taking sustainable fuels very seriously.  (A recent report highlighted that Pentagon investment in green technologies rose to $1.2 billion, up from $400 million, and is projected to reach $10 billion annually by 2030.)  The Pentagon’s Defence Advanced Research Projects Agency (which finances and monitors research into algae fuels,) says it has now managed to produce algafuel for $2 per gallon and that it will produce jet aircraft quality algafuel for $3 per gallon by 2013. Unsurprisingly, commercial aviation companies around the world are also taking an interest in algae biofuels to reduce their own costs and carbon footprints.

As interest grows and more funding becomes available, the industry is blossoming and more skilled people are needed. Could we witness a global shift to sustainable fuels in our lifetime?  We certainly hope so.

Biobutanol as a Biofuel

The major techno-commercial limitations of existing biofuels has catalyzed the development of advanced biofuels such as cellulosic ethanol, biobutanol and mixed alcohols. Biobutanol is generating good deal of interest as a potential green alternative to petroleum fuels. It is increasingly being considered as a superior automobile fuel in comparison to bioethanol as its energy content is higher. The problem of demixing that is encountered with ethanol-petrol blends is considerably less serious with biobutanol-petrol blends. Besides, it reduces the harmful emissions substantially. It is less corrosive and can be blended in any concentration with petrol (gasoline). Several research studies suggest that butanol can be blended into either petrol or diesel to as much as 45 percent without engine modifications or severe performance degradation.

Production of Biobutanol

Biobutanol is produced by microbial fermentation, similar to bioethanol, and can be made from the same range of sugar, starch or cellulosic feedstocks. The most commonly used microorganisms are strains of Clostridium acetobutylicum and Clostridium beijerinckii. In addition to butanol, these organisms also produce acetone and ethanol, so the process is often referred to as the “ABE fermentation”.

The main concern with Clostridium acetobutylicum is that it easily gets poisoned at concentrations above 2% of biobutanol in the fermenting mixture. This hinders the production of bio-butanol in economically viable quantities. In recent years, there has been renewed interest in biobutanol due to increasing petroleum prices and search for clean energy resources. Researchers have made significant advances in designing new microorganisms capable of surviving in high butanol concentrations. The new genetically modified micro-organisms have the capacity to degrade even the cellulosic feedstocks.

Latest Trends

Biobutanol production is currently more expensive than bioethanol which has hampered its commercialization. However, biobutanol has several advantages over ethanol and is currently the focus of extensive research and development. There is now increasing interest in use of biobutanol as a transport fuel. As a fuel, it can be transported in existing infrastructure and does not require flex-fuel vehicle pipes and hoses. Fleet testing of biobutanol has begun in the United States and the European Union. A number of companies are now investigating novel alternatives to traditional ABE fermentation, which would enable biobutanol to be produced on an industrial scale.

Global Waste to Energy Market

Waste-to-Energy is the use of modern combustion and biochemical technologies to recover energy, usually in the form of electricity and steam, from urban wastes. These new technologies can reduce the volume of the original waste by 90%, depending upon composition and use of outputs. The main categories of waste-to-energy technologies are physical technologies, which process waste to make it more useful as fuel; thermal technologies, which can yield heat, fuel oil, or syngas from both organic and inorganic wastes; and biological technologies, in which bacterial fermentation is used to digest organic wastes to yield fuel.

The global market for waste-to-energy technologies was valued at US$6.2bn in 2012 which is  forecasted to increase to US$29.2bn by 2022. While the biological WTE segment is expected to grow more rapidly from US$1.4bn in 2008 to approximately US$2.5bn in 2014, the thermal WTE segment is estimated to constitute the vast bulk of the entire industry’s worth. This segment was valued at US$18.5bn in 2008 and is forecasted to expand to US$23.7bn in 2014.

The global market for waste to energy technologies has shown substantial growth over the last five years, increasing from $4.83 billion in 2006, to $7.08 billion in 2010 with continued market growth through the global economic downturn. Over the coming decade, growth trends are expected to continue, led by expansion in the US, European, Chinese, and Indian markets. By 2021, based on continued growth in Asian markets combined with the maturation of European waste management regulations and European and US climate mitigation strategies, the annual global market for waste to energy technologies will exceed $27 billion, for all technologies combined.

Asia-Pacific’s waste-to-energy market will post substantial growth by 2015, as more countries view the technology as a sustainable alternative to landfills for disposing waste while generating clean energy. In its new report, Frost & Sullivan said the industry could grow at a compound annual rate of 6.7 percent for thermal waste-to-energy and 9.7 percent for biological waste-to-energy from 2008 to 2015.

The WTE market in Europe is forecasted to expand at an exponential rate and will continue to do so for at least the next 10 years. The continent’s WTE capacity is projected to increase by around 13 million tonnes, with almost 100 new WTE facilities to come online by 2012. In 2008, the WTE market in Europe consisted of approximately 250 players due in large to the use of bulky and expensive centralized WTE facilities, scattered throughout Western Europe.

Behavioral Drivers Behind Food Wastes

food-waste-behaviorBy 2075, the United Nations estimates the global population will peak at 9.5 billion, an extra 3 billion mouths to feed by the end of the century. Meanwhile, while we produce about four billion tonnes of food annually, it is estimated that 30-50% of this never reaches our plates. Of the food that does reach us, some western societies throw away up to a third of all food purchased. This has enormous implications for the global environment, from wasting the water used to grow the food to adverse effects on climate, land and biodiversity.

The drivers behind these phenomenal levels of food waste are complex and include food pricing, logistical and storage issues. However, given the significant level of waste that happens within the households of societies like the UK and US, it is useful and informative to consider those behaviours that drive this level of waste.

The quality of data around food waste, as with much of waste data, has historically been poor. To this end, WRAP commissioned groundbreaking research in the UK in 2006/7 to act as a baseline to their Love Food Hate Waste campaign. This came up with the alarming statistic that 1/3 of food bought by a UK household was thrown away. Until this time, there had been no comprehensive research, either by food manufacturers, retailers or interest groups, suggesting the importance of government, or some other dis-interested party, taking a lead on the issue.

Back to Basics

There may be a link between the amount of time spent preparing food, and the skill and effort that goes into this, and the amount of food waste produced. This has led to a loss of confidence in the kitchen, with individuals losing basic skills that allow them to cook with leftovers, understand food labeling, including Best Before and Use By, even basic storing. WRAP had found little evidence of best practice storage advice so carried out the research themselves – leading the (surprising for many) conclusion that fruit such as apples and pears are best stored in the fridge wrapped in a plastic cover. However, this has masked a larger trend of less time spent in the kitchen, due to demographic changes. This of course begs the question – how should we use this when trying to reduce food waste? Should we encourage people to cook from scratch as a principle?

Although waste prevention and recycling are clearly separated within the waste hierarchy, there are apparent links between the two when considering food waste. There is an urgent need for legislation to enforce separate food waste collections, not only to ensure it was diverted to anaerobic digestion or composting, but also as it led to greater self awareness around food waste. WRAP research has clearly showed a fall in food waste when separate food waste collections were introduced.

Role of Packaging

Historically, packaging has always been a high priority to the public when asked about priorities for reducing waste. However, as awareness of food waste has grown, a more nuanced position has developed among waste managers. While excess packaging is clearly undesirable, and, within the UK for instance, the Courtauld Commitment  has helped reduced grocery packaging by 2.9 million tonnes of waste so far, there is a realization of the importance of food packaging in preserving food and hence reducing food waste.

Making food easily accessible and affordable by many, it could be argued, is one of the crowning achievements of our age. Over the last century, the proportion of household income that is spent on food has plummeted, and there is a direct link to malnutrition and food prices, particularly for children. But does cheap food mean that it is less valued and hence greater wastage? Is the answer expensive food? The evidence from WRAP in the UK is that food waste is still a serious economic issue for households, and underlining the economic case for reducing food waste a major incentive for households, especially as food prices are not entering an era of increase and instability, providing added economic urgency

Political Persuasions

Different political persuasions often differ in the approaches they take to changing behaviours and food waste is no different. In the UK, the Courtauld Commitment is a voluntary agreement aimed at encouraging major retailers to take responsibility mainly for packaging, later growing to encompass food waste, voluntary and so far has seen a 21% reduction in food waste post-consumer.

Meanwhile Wales (in the UK) effectively banned food waste from landfill. Scotland has ensured that businesses make food waste available for separate collection – again it’s only once you see it, you can manage it. Campaigns like the UK’s Love Food Hate Waste have been successful but measuring food waste prevention, as with all waste prevention, is notoriously difficult. But, people are now widely aware of food waste as an issue – we even see celebrity chefs actively talking about food waste reduction and recipes involving leftovers or food that is about to go off.

There is clearly a balance between food waste and food safety, with a commitment to reducing food waste throughout the retail and catering world, not just at home. By engaging environmental health officers to help deliver this, a potentially conflicting message can be delivered in a nuanced and balanced way. Indeed, environmental health officers in Scotland will be responsible for ensuring that Scottish food businesses present their food waste for separate collection.

Role of Communication

It is worth considering how the message should be communicated, and by whom. The community sector are more trusted by the public than government and the private sector are more effective at imparting personal, deeply held beliefs – the sort of beliefs that need to change if we are to see long term changes in attitudes towards consumption and hence waste production.

Furthermore, communications can engage wider audiences that hold an interest in reducing food waste that is perhaps not primarily environmental. The health and economic benefits of issues and behaviours that also result in food waste prevention may be the prevalent message that fits with a particular audience. So whilst the main aim of a training session might be food waste prevention, this is may not be the external message. And this has wider implications for waste prevention, and how we engage audiences around it.

Municipal authorities tasked with waste prevention will need to engage with new groups, in new ways. They will have to consider approaches previously considered to be beyond their powers to engage new audiences – should they be partnering with public health authorities with an interest in nutrition, or social housing providers that are focused on financial inclusion.

Should waste prevention even be a discipline in itself? After all, across material streams it is a motley assortment of behaviours with different drivers. Furthermore, with the knots that one can tie oneself in trying to measure waste that doesn’t get generated, – therefore doesn’t exist – should we integrate waste prevention in to other socio-economic programmes and position it as an “added benefit” to them?

Note: The article is being republished with the permission of our collaborative partner be Waste Wise. The unabridged version can be found at this link. Special thanks to the author Mike Webster.

Recycling of EPS Foam Packaging

Municipalities and organisations are facing a growing problem in disposal and recycling of EPS foam packaging and products. EPS foam (Encapsulated Poly-Styrene) packaging is a highly popular plastic packaging material which finds wide application in packaging of food items, electronic goods, electrical appliances, furniture etc due to its excellent insulating and protective properties. EPS foam (also known as polystyrene) is also used to make useful products such as disposable cups, trays, cutlery, cartons, cases etc. However, being large and bulky, polystyrene take up significant space in rubbish bins which means that bins becomes full more quickly and therefore needs to be emptied more often.

Polystyrene is lightweight compared to its volume so it occupies lots of precious landfill space and can be blown around and cause a nuisance in the surrounding areas. Although some companies have a recycling policy, most of the polystyrene still find its way into landfill sites around the world.

Environmental Hazards of EPS Foam

While it is estimated that EPS foam products accounts for less than 1% of the total weight of landfill materials, the fraction of landfill space it takes up is much higher considering that it is very lightweight.  Furthermore, it is essentially non-biodegradable, taking hundreds perhaps thousands of years to decompose.

Even when already disposed of in landfills, polystyrene can easily be carried by the wind and litter the streets or end up polluting water bodies. When EPS foam breaks apart, the small polystyrene components can be eaten by marine organisms which can cause choking or intestinal blockage.

Polystyrene can also be consumed by fishes once it breaks down in the ocean.  Marine animals higher up the food chain could eat the fishes that have consumed EPS, thus concentrating the contaminant.  It could be a potential health hazard for us humans who are on top of the food chain considering that styrene, the plastic monomer used in manufacturing EPS has been classified by the US National Institutes of Health (NIH) and the International Agency for Research on Cancer (IARC) as a possible human carcinogen.

Styrene is derived from either petroleum or natural gas, both of which are non-renewable and are rapidly being depleted, creating environmental sustainability problems for EPS.

Trends in EPS Foam Recycling

Although the Alliance of Foam Packaging Recyclers have reported that the recycling rate for post-consumer and post-commercial EPS in the United States have risen to 28% in 2010 from around 20% in 2008, this value is still lower than most solid wastes.  According to USEPA, auto batteries, steel cans and glass containers have recycle rates of 96.2%, 70.6% and 34.2% respectively.

Because it is bulky, EPS foam takes up storage space and costs more to transport and yet yields only a small amount of polystyrene for re-use or remolding (infact, polystyrene accounts for only 2% of the volume of uncompacted EPS foams). This provides little incentive for recyclers to consider EPS recycling.

Products that have been used to hold or store food should be thoroughly cleaned for hygienic reasons, thus compounding the costs.  For the same reasons, these products cannot be recycled to produce the same food containers but rather are used for non-food plastic products.  The manufacture of food containers, therefore, always requires new polystyrene.  At present, it is more economical to produce new EPS foam products than to recycle it, and manufacturers would rather have the higher quality of fresh polystyrene over the recycled one.

The cost of transporting bulky polystyrene waste discourages recyclers from recycling it.  Organizations that receive a large amount of EPS foam (especially in packaging) can invest in a compactor that will reduce the volume of the products. Recyclers will pay more for the compacted product so the investment can be recovered relatively easier.

There are also breakthroughs in studies concerning EPS recycling although most of these are still in the research or pilot stage.  Several studies have found that the bacteria Pseudomonas putida is able to convert polystyrene to a more biodegradable plastic.  The process of polystyrene depolymerization – converting polystyrene back to its styrene monomer – is also gaining ground.

Global Trends in the Biomass Sector

There has been a flurry of activity in the biomass energy and waste-to-energy sector in recent year, with many new projects and initiatives being given the green light across the globe. This movement has been on both a regional and local level; thanks to the increased efficiency of green energy generators and a slight lowering in implementation costs, more businesses and even some homeowners are converting waste-to-energy systems or by installing biomass energy units.

Latest from the United Kingdom

Our first notable example of this comes from Cornwall in the UK. As of this week, a small hotel has entirely replaced its previous oil-based heating system with biomass boilers. Fuelled from wood wastes brought in from a neighboring forest, the BudockVean hotel has so far been successful in keeping the entire establishment warm on two small boilers despite it being the height of British winter – and when warmer weather arrives, plans to install solar panels on the building’s roof is to follow.

Similar projects have been undertaken across small businesses in Britain, including the south-coast city of Plymouth that has just been announced to house a 10MW biomass power plant (alongside a 20MW plant already in construction). These developments arein part thanks to the UK government’s Renewable Heat Incentive which was launched back in 2011. The scheme only provides funding to non-domestic properties currently, but a domestic scheme is in the works this year to help homeowners also move away from fossil fuels.

Initiatives (and Setbacks) in the US

Back across the pond, and the state of New York is also launching a similar scheme. The short-term plan is to increase public education on low-emission heating and persuade a number of large business to make the switch; in the longer term, $800m will be used to install advanced biomass systems in large, state-owned buildings.

A further $40m will be used as part of a competition to help create a series of standalone energy grids in small towns and rural areas, which is a scheme that could hopefully see adopted beyond New York if all goes well.


Unfortunately, the move away from fossil fuels hasn’t been totally plain sailing across the US. Georgia suffered a blow this week as plans to convert a 155MW coal plant to biomass have been abandoned, citing large overheads and low projected returns. The company behind the project have met similar difficulties at other sites, but as of this week are moving ahead with further plans to convert over 2000MW of oil and coal energy generation in the coming years.

Elsewhere in the US, a company has conducted a similar study as to whether biomass plant building will be feasible in both Florida and Louisiana. Surveying has only just been completed, but if things go better than the recent developments in Georgia, the plants will go a long way to converting biomass to fertilizer for widespread use in agriculture in both states.

Far East Leading the Way

One country that is performing particularly well in biomass energy investment market is Japan. Biomass is being increasingly used in power plants in Japan as a source of fuel, particularly after the tragic accident at Fukushima nuclear power plant in 2011.  Palm kernel shell (PKS) has emerged as a favorite choice of biomass-based power plants in the country. Most of these biomass power plants use PKS as their energy source, and only a few operate with wood pellets. Interestingly, most of the biomass power plants in Japan have been built after 2015..

On the contrary, the US and Europe saw a fairly big fall in financing during this period; it should be noted, however, that this relates to the green energy investment market as a whole as opposed to biomass-specific funding. The increase seen in Japan has been attributed to an uptake in solar paneling, and if we look specifically to things such as the global demand for biomass pellets, we see that the most recent figures paint the overall market in a much more favorable light for the rest of the world.

Brighter Times Ahead

All in all, it’s an exciting time for the biomass industry despite the set backs which are being experienced in some regions.  On the whole, legislators and businesses are working remarkably well together in order to pave the way forward – being a fairly new market (from a commercially viable sense at least), it has taken a little while to get the ball rolling, but expect to see it blossom quickly now that the idea of biomass is starting to take hold.

How the Biofuel Industry is Growing in the US

drop-in-biofuelsBiofuels were once forgotten in the United States, mainly when huge petroleum deposits kept fuel prices low.  With the increase in oil prices recently, the biofuel industry in the US is rising significantly.  Experts predict that this green energy efficient industry will continue to grow within the next 7 to 10 years.

The Source of Biofuels

Those who are concerned with the prospect of global warming love the potential use of biofuels. Produced either directly or indirectly from animal waste and plant materials, biofuels are less costly than other types of fuel.  Already in the national and global market, the trend for this fuel is rising.

Online Reverse Auction Software

Due to the growth of the biofuel industry, online software for energy brokers and energy suppliers is an available market for entrepreneurs.  The software to efficiently sell energy services to purchasers is a must have for suppliers and brokers.  The reverse auction process effectively conducts online business for those in the biofuel industry.

Both regulated and deregulated gas and electricity markets are involved in the reverse auction process in which the buyer and seller roles are reversed.  The buyer is given the option of testing and evaluating multiple pricing parameters to find a good fit.  Commercial, industrial, and manufacturing facilities take advantage of this platform.

Reverse Auction Benefits

Reverse auctions in the biofuel industry have been said to cut costs tremendously.  Although the seller pays a fee to the service provider, the bidding process cuts costs all around for both buyer and seller.  A situation in which both sides win is seen as a huge benefit by all involved.

As a very lucrative market, the biofuel industry benefits from reverse auctions.  Market efficiency is increased, and the process of obtaining the goods and services is enhanced.  Proper software and other technical aspects of the process is essential thus the reason that the online reverse auction software market is critical.  Quality and professional relationships are enhanced rather than compromised as is often the case in other markets.

Biofuel Market Projections and Uses

According to market research, the biofuel industry is expected to reach approximately 218 billion dollars by 2022.  A 4.5% growth is expected by 2022 as well.  Investors see these projections as an open door of opportunity.  By the year 2025, the increase is predicted to be at approximately 240 billion dollars.

Biofuel is used for other purposes besides first-generation fuel.  It is used in vegetable oil and cosmetics, and it is used to treat Vitamin A deficiency and other health issues. Biofuel is predicted to aid the improvement of economic conditions due to its health benefits and appeal to green energy supporters.  These factors explain the reasons for the projected growth and profit for this industry.

With the continued growth of the biofuel industry, reverse auctions will be a much-needed process.  The efficient software to accompany reverse auctions will keep the market flowing which will further aid the growth of the industry for years to come.

Waste-to-Energy Prospects in the Middle East

wastetoenergy-plant-qatarA combination of high fuel prices and a search for alternative technologies, combined with massive waste generation has led to countries in the Middle East region to consider Waste to Energy (or WtE) as a sustainable waste management strategy and cost-effective fuel source for the future. We look at the current state of the WtE market in the region.

It is estimated that each person in the United Arab Emirates produces 2 kg of municipal solid waste per day – that puts the total waste production figure somewhere in the region of 150 million tonnes every year. Given that the population currently stands at over 9.4 million (2013) and is projected to see an annual average growth figure of 2.3% over the next six years, over three times the global average, it’s clear that this is a lot of waste to be disposed of. In addition, the GCC nations in general rank in the bottom 10% of the sustainable nations in the world and are also amongst the top per capita carbon-releasers.

When we also consider that UAE are actively pursuing alternative energy technologies to supplement rapidly-decreasing and increasingly-costly traditional fossil fuels, mitigate the harmful effects of landfill, and reduce an ever-increasing carbon footprint, it becomes apparent that high on their list of proposed solutions is Waste to Energy (WtE). It could be an ideal solution to the problem.

What is WtE

Waste-to-Energy works on the simple principle of taking waste and turning it into a form of energy. This can be electricity, heat or transport fuels, and can be achieved in a variety of ways – the most common of which is incineration. MSW is taken to a WtE plant, incinerated at high temperatures and the resultant heat is used to boil water which creates steam to turn turbines, in the same way that burning gas or coal produces power. Gasification and anaerobic digestion are two further WtE methods which are also used.

However, WtE has several advantages over burning fossil fuels. Primarily amongst them are the potential to minimise landfill sites which have caused serious concern for many years. They are not only unsightly, but can also be contaminated, biologically or chemically. Toxic waste can leach into the ground beneath them and enter the water table.

Landfill sites also continuously emit carbon dioxide and methane, both harmful greenhouse gases – in addition methane is potentially explosive. Sending MSW to landfill also discourages recycling and necessitates more demand for raw materials. Finally, landfill sites are unpleasant places which attract vermin and flies and give off offensive odours.

WtE has been used successfully in many countries around the world for a long time now. Europe is the most enthusiastic proponent of WtE, with around 450 facilities; the Asia-Pacific region has just over 300; the USA has almost 100. In the rest of the world there are less than 30 facilities but this number is growing. Globally, it is estimated that the WtE industry is growing at approximately US $2 billion per annum and will be valued at around US $80 billion by the year 2022.

The USA ranks third in the world for the percentage of waste which is incinerated for energy production. Around 16% of the rubbish that America produces every day is burned in its WtE plants. Advocates claims the advantages are clear: reducing the amount of greenhouse gas emitted into the environment (estimates say that burning one ton of waste in a WtE plant saves between one half and one ton of greenhouse gases compared to landfill emissions, or the burning of conventional fuels), freeing up land which would normally be used for landfill (and, therefore, extending the life of existing landfill sites), encouraging recycling (some facilities have managed to reduce the amount of waste they process by up to 90% and the recycling of ferrous and non-ferrous metals provides an additional income source), and, perhaps most importantly, producing a revenue stream from the sale of the electricity generated.

In one small county alone, Lancaster, Pennsylvania, with a population of just over half-a-million people, more than 4.4 billion kWh of electricity has been produced through WtE in the last 20 years. This has generated over USD $256 million through its sale to local residents.

WtE in the Middle East

Given WtE’s potential to not only reduce greenhouse gas emissions and pollution on a local scale, but also to produce much-needed electricity in the region, what is the current state of affairs in the Middle East. There are several WtE initiatives already underway in the region. Qatar was the first GCC country to implement a waste-to-energy programme and currently generates over 30MW of electricity from its Domestic Solid Waste Management Center (DSWMC) located at Messeid (Doha). Saudi Arabia and the UAE have both stated that they have WtE production capacity targets of 100MW. Bahrain, Kuwait and Oman are also seriously considering waste-to-energy as a means to tackle the worsening waste management problem.

Abu Dhabi’s government is currently spending around US $850 million to build a 100 MW plant which is expected to be operational by 2017 and which will supply around 20,000 households with electricity. In Sharjah, the world’s largest household waste gasification plant, costing in excess of US $480 million, is due to be open in 2015.

However, not all the GCC members are as enthusiastic about WtE. Dubai’s government has recently scrapped plans for a US $2 billion project which would have made use of the 7,800 tonnes of domestic waste which is produced in Dubai every single day.

We asked Salman Zafar, Founder of Doha-based EcoMENA, a popular sustainability advocacy, why given the sheer scale of the waste in the Gulf region, the production of this form of energy is still in its infancy. “The main deterrent in the implementation of WtE projects in the Middle East is the current availability of cheap sources of energy already available, especially in the GCC,” he commented.

Salman Zafar further says, “WtE projects demand a good deal of investment, heavy government subsidies, tipping fees, power purchase agreements etc, which are hard to obtain for such projects in the region.” “The absence of a sustainable waste management strategy in Middle East nations is also a vital factor behind the very slow pace of growth of the WtE sector in the region. Regional governments, municipalities and local SWM companies find it easier and cost-effective to dump untreated municipal waste in landfills,” he added.

So, how can WtE contribute towards the region’s growing power demand in the future?

“Modern WtE technologies, such as RDF-based incineration, gasification, pyrolysis, anaerobic digestion etc, all have the ability to transform power demand as well as the waste management scenario in the region,” he continued. “A typical 250 – 300 tons per day WtE plant can produce around 3 – 4 MW of electricity and a network of such plants in cities across the region can make a real difference in the energy sector as well as augmenting energy reserves in the Middle East. In fact, WtE plants also produce a tremendous about of heat energy which can be utilised in process industries, further maximising their usefulness,” Salman Zafar concluded.

New technologies naturally take time to become established as their efficiency versus cost ratios are analysed. However, it is becoming increasingly clearer that waste-to-energy is a viable and efficient method for solid waste management and generation of alternative energy in the Middle East.