Biobutanol as a Biofuel

The major techno-commercial limitations of existing biofuels has catalyzed the development of advanced biofuels such as cellulosic ethanol, biobutanol and mixed alcohols. Biobutanol is generating good deal of interest as a potential green alternative to petroleum fuels. It is increasingly being considered as a superior automobile fuel in comparison to bioethanol as its energy content is higher. The problem of demixing that is encountered with ethanol-petrol blends is considerably less serious with biobutanol-petrol blends. Besides, it reduces the harmful emissions substantially. It is less corrosive and can be blended in any concentration with petrol (gasoline). Several research studies suggest that butanol can be blended into either petrol or diesel to as much as 45 percent without engine modifications or severe performance degradation.

Production of Biobutanol

Biobutanol is produced by microbial fermentation, similar to bioethanol, and can be made from the same range of sugar, starch or cellulosic feedstocks. The most commonly used microorganisms are strains of Clostridium acetobutylicum and Clostridium beijerinckii. In addition to butanol, these organisms also produce acetone and ethanol, so the process is often referred to as the “ABE fermentation”.

The main concern with Clostridium acetobutylicum is that it easily gets poisoned at concentrations above 2% of biobutanol in the fermenting mixture. This hinders the production of bio-butanol in economically viable quantities. In recent years, there has been renewed interest in biobutanol due to increasing petroleum prices and search for clean energy resources. Researchers have made significant advances in designing new microorganisms capable of surviving in high butanol concentrations. The new genetically modified micro-organisms have the capacity to degrade even the cellulosic feedstocks.

Latest Trends

Biobutanol production is currently more expensive than bioethanol which has hampered its commercialization. However, biobutanol has several advantages over ethanol and is currently the focus of extensive research and development. There is now increasing interest in use of biobutanol as a transport fuel. As a fuel, it can be transported in existing infrastructure and does not require flex-fuel vehicle pipes and hoses. Fleet testing of biobutanol has begun in the United States and the European Union. A number of companies are now investigating novel alternatives to traditional ABE fermentation, which would enable biobutanol to be produced on an industrial scale.

Global Waste to Energy Market

Waste-to-Energy is the use of modern combustion and biochemical technologies to recover energy, usually in the form of electricity and steam, from urban wastes. These new technologies can reduce the volume of the original waste by 90%, depending upon composition and use of outputs. The main categories of waste-to-energy technologies are physical technologies, which process waste to make it more useful as fuel; thermal technologies, which can yield heat, fuel oil, or syngas from both organic and inorganic wastes; and biological technologies, in which bacterial fermentation is used to digest organic wastes to yield fuel.

The global market for waste-to-energy technologies was valued at US$6.2bn in 2012 which is  forecasted to increase to US$29.2bn by 2022. While the biological WTE segment is expected to grow more rapidly from US$1.4bn in 2008 to approximately US$2.5bn in 2014, the thermal WTE segment is estimated to constitute the vast bulk of the entire industry’s worth. This segment was valued at US$18.5bn in 2008 and is forecasted to expand to US$23.7bn in 2014.

The global market for waste to energy technologies has shown substantial growth over the last five years, increasing from $4.83 billion in 2006, to $7.08 billion in 2010 with continued market growth through the global economic downturn. Over the coming decade, growth trends are expected to continue, led by expansion in the US, European, Chinese, and Indian markets. By 2021, based on continued growth in Asian markets combined with the maturation of European waste management regulations and European and US climate mitigation strategies, the annual global market for waste to energy technologies will exceed $27 billion, for all technologies combined.

Asia-Pacific’s waste-to-energy market will post substantial growth by 2015, as more countries view the technology as a sustainable alternative to landfills for disposing waste while generating clean energy. In its new report, Frost & Sullivan said the industry could grow at a compound annual rate of 6.7 percent for thermal waste-to-energy and 9.7 percent for biological waste-to-energy from 2008 to 2015.

The WTE market in Europe is forecasted to expand at an exponential rate and will continue to do so for at least the next 10 years. The continent’s WTE capacity is projected to increase by around 13 million tonnes, with almost 100 new WTE facilities to come online by 2012. In 2008, the WTE market in Europe consisted of approximately 250 players due in large to the use of bulky and expensive centralized WTE facilities, scattered throughout Western Europe.

Behavioral Drivers Behind Food Wastes

food-waste-behaviorBy 2075, the United Nations estimates the global population will peak at 9.5 billion, an extra 3 billion mouths to feed by the end of the century. Meanwhile, while we produce about four billion tonnes of food annually, it is estimated that 30-50% of this never reaches our plates. Of the food that does reach us, some western societies throw away up to a third of all food purchased. This has enormous implications for the global environment, from wasting the water used to grow the food to adverse effects on climate, land and biodiversity.

The drivers behind these phenomenal levels of food waste are complex and include food pricing, logistical and storage issues. However, given the significant level of waste that happens within the households of societies like the UK and US, it is useful and informative to consider those behaviours that drive this level of waste.

The quality of data around food waste, as with much of waste data, has historically been poor. To this end, WRAP commissioned groundbreaking research in the UK in 2006/7 to act as a baseline to their Love Food Hate Waste campaign. This came up with the alarming statistic that 1/3 of food bought by a UK household was thrown away. Until this time, there had been no comprehensive research, either by food manufacturers, retailers or interest groups, suggesting the importance of government, or some other dis-interested party, taking a lead on the issue.

Back to Basics

There may be a link between the amount of time spent preparing food, and the skill and effort that goes into this, and the amount of food waste produced. This has led to a loss of confidence in the kitchen, with individuals losing basic skills that allow them to cook with leftovers, understand food labeling, including Best Before and Use By, even basic storing. WRAP had found little evidence of best practice storage advice so carried out the research themselves – leading the (surprising for many) conclusion that fruit such as apples and pears are best stored in the fridge wrapped in a plastic cover. However, this has masked a larger trend of less time spent in the kitchen, due to demographic changes. This of course begs the question – how should we use this when trying to reduce food waste? Should we encourage people to cook from scratch as a principle?

Although waste prevention and recycling are clearly separated within the waste hierarchy, there are apparent links between the two when considering food waste. There is an urgent need for legislation to enforce separate food waste collections, not only to ensure it was diverted to anaerobic digestion or composting, but also as it led to greater self awareness around food waste. WRAP research has clearly showed a fall in food waste when separate food waste collections were introduced.

Role of Packaging

Historically, packaging has always been a high priority to the public when asked about priorities for reducing waste. However, as awareness of food waste has grown, a more nuanced position has developed among waste managers. While excess packaging is clearly undesirable, and, within the UK for instance, the Courtauld Commitment  has helped reduced grocery packaging by 2.9 million tonnes of waste so far, there is a realization of the importance of food packaging in preserving food and hence reducing food waste.

Making food easily accessible and affordable by many, it could be argued, is one of the crowning achievements of our age. Over the last century, the proportion of household income that is spent on food has plummeted, and there is a direct link to malnutrition and food prices, particularly for children. But does cheap food mean that it is less valued and hence greater wastage? Is the answer expensive food? The evidence from WRAP in the UK is that food waste is still a serious economic issue for households, and underlining the economic case for reducing food waste a major incentive for households, especially as food prices are not entering an era of increase and instability, providing added economic urgency

Political Persuasions

Different political persuasions often differ in the approaches they take to changing behaviours and food waste is no different. In the UK, the Courtauld Commitment is a voluntary agreement aimed at encouraging major retailers to take responsibility mainly for packaging, later growing to encompass food waste, voluntary and so far has seen a 21% reduction in food waste post-consumer.

Meanwhile Wales (in the UK) effectively banned food waste from landfill. Scotland has ensured that businesses make food waste available for separate collection – again it’s only once you see it, you can manage it. Campaigns like the UK’s Love Food Hate Waste have been successful but measuring food waste prevention, as with all waste prevention, is notoriously difficult. But, people are now widely aware of food waste as an issue – we even see celebrity chefs actively talking about food waste reduction and recipes involving leftovers or food that is about to go off.

There is clearly a balance between food waste and food safety, with a commitment to reducing food waste throughout the retail and catering world, not just at home. By engaging environmental health officers to help deliver this, a potentially conflicting message can be delivered in a nuanced and balanced way. Indeed, environmental health officers in Scotland will be responsible for ensuring that Scottish food businesses present their food waste for separate collection.

Role of Communication

It is worth considering how the message should be communicated, and by whom. The community sector are more trusted by the public than government and the private sector are more effective at imparting personal, deeply held beliefs – the sort of beliefs that need to change if we are to see long term changes in attitudes towards consumption and hence waste production.

Furthermore, communications can engage wider audiences that hold an interest in reducing food waste that is perhaps not primarily environmental. The health and economic benefits of issues and behaviours that also result in food waste prevention may be the prevalent message that fits with a particular audience. So whilst the main aim of a training session might be food waste prevention, this is may not be the external message. And this has wider implications for waste prevention, and how we engage audiences around it.

Municipal authorities tasked with waste prevention will need to engage with new groups, in new ways. They will have to consider approaches previously considered to be beyond their powers to engage new audiences – should they be partnering with public health authorities with an interest in nutrition, or social housing providers that are focused on financial inclusion.

Should waste prevention even be a discipline in itself? After all, across material streams it is a motley assortment of behaviours with different drivers. Furthermore, with the knots that one can tie oneself in trying to measure waste that doesn’t get generated, – therefore doesn’t exist – should we integrate waste prevention in to other socio-economic programmes and position it as an “added benefit” to them?

Note: The article is being republished with the permission of our collaborative partner be Waste Wise. The unabridged version can be found at this link. Special thanks to the author Mike Webster.

Recycling of EPS Foam Packaging

Municipalities and organisations are facing a growing problem in disposal and recycling of EPS foam packaging and products. EPS foam (Encapsulated Poly-Styrene) packaging is a highly popular plastic packaging material which finds wide application in packaging of food items, electronic goods, electrical appliances, furniture etc due to its excellent insulating and protective properties. EPS foam (also known as polystyrene) is also used to make useful products such as disposable cups, trays, cutlery, cartons, cases etc. However, being large and bulky, polystyrene take up significant space in rubbish bins which means that bins becomes full more quickly and therefore needs to be emptied more often.

Polystyrene is lightweight compared to its volume so it occupies lots of precious landfill space and can be blown around and cause a nuisance in the surrounding areas. Although some companies have a recycling policy, most of the polystyrene still find its way into landfill sites around the world.

Environmental Hazards of EPS Foam

While it is estimated that EPS foam products accounts for less than 1% of the total weight of landfill materials, the fraction of landfill space it takes up is much higher considering that it is very lightweight.  Furthermore, it is essentially non-biodegradable, taking hundreds perhaps thousands of years to decompose.

Even when already disposed of in landfills, polystyrene can easily be carried by the wind and litter the streets or end up polluting water bodies. When EPS foam breaks apart, the small polystyrene components can be eaten by marine organisms which can cause choking or intestinal blockage.

Polystyrene can also be consumed by fishes once it breaks down in the ocean.  Marine animals higher up the food chain could eat the fishes that have consumed EPS, thus concentrating the contaminant.  It could be a potential health hazard for us humans who are on top of the food chain considering that styrene, the plastic monomer used in manufacturing EPS has been classified by the US National Institutes of Health (NIH) and the International Agency for Research on Cancer (IARC) as a possible human carcinogen.

Styrene is derived from either petroleum or natural gas, both of which are non-renewable and are rapidly being depleted, creating environmental sustainability problems for EPS.

Trends in EPS Foam Recycling

Although the Alliance of Foam Packaging Recyclers have reported that the recycling rate for post-consumer and post-commercial EPS in the United States have risen to 28% in 2010 from around 20% in 2008, this value is still lower than most solid wastes.  According to USEPA, auto batteries, steel cans and glass containers have recycle rates of 96.2%, 70.6% and 34.2% respectively.

Because it is bulky, EPS foam takes up storage space and costs more to transport and yet yields only a small amount of polystyrene for re-use or remolding (infact, polystyrene accounts for only 2% of the volume of uncompacted EPS foams). This provides little incentive for recyclers to consider EPS recycling.

Products that have been used to hold or store food should be thoroughly cleaned for hygienic reasons, thus compounding the costs.  For the same reasons, these products cannot be recycled to produce the same food containers but rather are used for non-food plastic products.  The manufacture of food containers, therefore, always requires new polystyrene.  At present, it is more economical to produce new EPS foam products than to recycle it, and manufacturers would rather have the higher quality of fresh polystyrene over the recycled one.

The cost of transporting bulky polystyrene waste discourages recyclers from recycling it.  Organizations that receive a large amount of EPS foam (especially in packaging) can invest in a compactor that will reduce the volume of the products. Recyclers will pay more for the compacted product so the investment can be recovered relatively easier.

There are also breakthroughs in studies concerning EPS recycling although most of these are still in the research or pilot stage.  Several studies have found that the bacteria Pseudomonas putida is able to convert polystyrene to a more biodegradable plastic.  The process of polystyrene depolymerization – converting polystyrene back to its styrene monomer – is also gaining ground.

Global Trends in the Biomass Sector

There has been a flurry of activity in the biomass energy and waste-to-energy sector in recent year, with many new projects and initiatives being given the green light across the globe. This movement has been on both a regional and local level; thanks to the increased efficiency of green energy generators and a slight lowering in implementation costs, more businesses and even some homeowners are converting waste-to-energy systems or by installing biomass energy units.

Latest from the United Kingdom

Our first notable example of this comes from Cornwall in the UK. As of this week, a small hotel has entirely replaced its previous oil-based heating system with biomass boilers. Fuelled from wood wastes brought in from a neighboring forest, the BudockVean hotel has so far been successful in keeping the entire establishment warm on two small boilers despite it being the height of British winter – and when warmer weather arrives, plans to install solar panels on the building’s roof is to follow.

Similar projects have been undertaken across small businesses in Britain, including the south-coast city of Plymouth that has just been announced to house a 10MW biomass power plant (alongside a 20MW plant already in construction). These developments arein part thanks to the UK government’s Renewable Heat Incentive which was launched back in 2011. The scheme only provides funding to non-domestic properties currently, but a domestic scheme is in the works this year to help homeowners also move away from fossil fuels.

Initiatives (and Setbacks) in the US

Back across the pond, and the state of New York is also launching a similar scheme. The short-term plan is to increase public education on low-emission heating and persuade a number of large business to make the switch; in the longer term, $800m will be used to install advanced biomass systems in large, state-owned buildings.

A further $40m will be used as part of a competition to help create a series of standalone energy grids in small towns and rural areas, which is a scheme that could hopefully see adopted beyond New York if all goes well.


Unfortunately, the move away from fossil fuels hasn’t been totally plain sailing across the US. Georgia suffered a blow this week as plans to convert a 155MW coal plant to biomass have been abandoned, citing large overheads and low projected returns. The company behind the project have met similar difficulties at other sites, but as of this week are moving ahead with further plans to convert over 2000MW of oil and coal energy generation in the coming years.

Elsewhere in the US, a company has conducted a similar study as to whether biomass plant building will be feasible in both Florida and Louisiana. Surveying has only just been completed, but if things go better than the recent developments in Georgia, the plants will go a long way to converting biomass to fertilizer for widespread use in agriculture in both states.

Far East Leading the Way

One country that is performing particularly well in biomass energy investment market is Japan. Biomass is being increasingly used in power plants in Japan as a source of fuel, particularly after the tragic accident at Fukushima nuclear power plant in 2011.  Palm kernel shell (PKS) has emerged as a favorite choice of biomass-based power plants in the country. Most of these biomass power plants use PKS as their energy source, and only a few operate with wood pellets. Interestingly, most of the biomass power plants in Japan have been built after 2015..

On the contrary, the US and Europe saw a fairly big fall in financing during this period; it should be noted, however, that this relates to the green energy investment market as a whole as opposed to biomass-specific funding. The increase seen in Japan has been attributed to an uptake in solar paneling, and if we look specifically to things such as the global demand for biomass pellets, we see that the most recent figures paint the overall market in a much more favorable light for the rest of the world.

Brighter Times Ahead

All in all, it’s an exciting time for the biomass industry despite the set backs which are being experienced in some regions.  On the whole, legislators and businesses are working remarkably well together in order to pave the way forward – being a fairly new market (from a commercially viable sense at least), it has taken a little while to get the ball rolling, but expect to see it blossom quickly now that the idea of biomass is starting to take hold.

How the Biofuel Industry is Growing in the US

drop-in-biofuelsBiofuels were once forgotten in the United States, mainly when huge petroleum deposits kept fuel prices low.  With the increase in oil prices recently, the biofuel industry in the US is rising significantly.  Experts predict that this green energy efficient industry will continue to grow within the next 7 to 10 years.

The Source of Biofuels

Those who are concerned with the prospect of global warming love the potential use of biofuels. Produced either directly or indirectly from animal waste and plant materials, biofuels are less costly than other types of fuel.  Already in the national and global market, the trend for this fuel is rising.

Online Reverse Auction Software

Due to the growth of the biofuel industry, online software for energy brokers and energy suppliers is an available market for entrepreneurs.  The software to efficiently sell energy services to purchasers is a must have for suppliers and brokers.  The reverse auction process effectively conducts online business for those in the biofuel industry.

Both regulated and deregulated gas and electricity markets are involved in the reverse auction process in which the buyer and seller roles are reversed.  The buyer is given the option of testing and evaluating multiple pricing parameters to find a good fit.  Commercial, industrial, and manufacturing facilities take advantage of this platform.

Reverse Auction Benefits

Reverse auctions in the biofuel industry have been said to cut costs tremendously.  Although the seller pays a fee to the service provider, the bidding process cuts costs all around for both buyer and seller.  A situation in which both sides win is seen as a huge benefit by all involved.

As a very lucrative market, the biofuel industry benefits from reverse auctions.  Market efficiency is increased, and the process of obtaining the goods and services is enhanced.  Proper software and other technical aspects of the process is essential thus the reason that the online reverse auction software market is critical.  Quality and professional relationships are enhanced rather than compromised as is often the case in other markets.

Biofuel Market Projections and Uses

According to market research, the biofuel industry is expected to reach approximately 218 billion dollars by 2022.  A 4.5% growth is expected by 2022 as well.  Investors see these projections as an open door of opportunity.  By the year 2025, the increase is predicted to be at approximately 240 billion dollars.

Biofuel is used for other purposes besides first-generation fuel.  It is used in vegetable oil and cosmetics, and it is used to treat Vitamin A deficiency and other health issues. Biofuel is predicted to aid the improvement of economic conditions due to its health benefits and appeal to green energy supporters.  These factors explain the reasons for the projected growth and profit for this industry.

With the continued growth of the biofuel industry, reverse auctions will be a much-needed process.  The efficient software to accompany reverse auctions will keep the market flowing which will further aid the growth of the industry for years to come.

Waste-to-Energy Prospects in the Middle East

wastetoenergy-plant-qatarA combination of high fuel prices and a search for alternative technologies, combined with massive waste generation has led to countries in the Middle East region to consider Waste to Energy (or WtE) as a sustainable waste management strategy and cost-effective fuel source for the future. We look at the current state of the WtE market in the region.

It is estimated that each person in the United Arab Emirates produces 2 kg of municipal solid waste per day – that puts the total waste production figure somewhere in the region of 150 million tonnes every year. Given that the population currently stands at over 9.4 million (2013) and is projected to see an annual average growth figure of 2.3% over the next six years, over three times the global average, it’s clear that this is a lot of waste to be disposed of. In addition, the GCC nations in general rank in the bottom 10% of the sustainable nations in the world and are also amongst the top per capita carbon-releasers.

When we also consider that UAE are actively pursuing alternative energy technologies to supplement rapidly-decreasing and increasingly-costly traditional fossil fuels, mitigate the harmful effects of landfill, and reduce an ever-increasing carbon footprint, it becomes apparent that high on their list of proposed solutions is Waste to Energy (WtE). It could be an ideal solution to the problem.

What is WtE

Waste-to-Energy works on the simple principle of taking waste and turning it into a form of energy. This can be electricity, heat or transport fuels, and can be achieved in a variety of ways – the most common of which is incineration. MSW is taken to a WtE plant, incinerated at high temperatures and the resultant heat is used to boil water which creates steam to turn turbines, in the same way that burning gas or coal produces power. Gasification and anaerobic digestion are two further WtE methods which are also used.

However, WtE has several advantages over burning fossil fuels. Primarily amongst them are the potential to minimise landfill sites which have caused serious concern for many years. They are not only unsightly, but can also be contaminated, biologically or chemically. Toxic waste can leach into the ground beneath them and enter the water table.

Landfill sites also continuously emit carbon dioxide and methane, both harmful greenhouse gases – in addition methane is potentially explosive. Sending MSW to landfill also discourages recycling and necessitates more demand for raw materials. Finally, landfill sites are unpleasant places which attract vermin and flies and give off offensive odours.

WtE has been used successfully in many countries around the world for a long time now. Europe is the most enthusiastic proponent of WtE, with around 450 facilities; the Asia-Pacific region has just over 300; the USA has almost 100. In the rest of the world there are less than 30 facilities but this number is growing. Globally, it is estimated that the WtE industry is growing at approximately US $2 billion per annum and will be valued at around US $80 billion by the year 2022.

The USA ranks third in the world for the percentage of waste which is incinerated for energy production. Around 16% of the rubbish that America produces every day is burned in its WtE plants. Advocates claims the advantages are clear: reducing the amount of greenhouse gas emitted into the environment (estimates say that burning one ton of waste in a WtE plant saves between one half and one ton of greenhouse gases compared to landfill emissions, or the burning of conventional fuels), freeing up land which would normally be used for landfill (and, therefore, extending the life of existing landfill sites), encouraging recycling (some facilities have managed to reduce the amount of waste they process by up to 90% and the recycling of ferrous and non-ferrous metals provides an additional income source), and, perhaps most importantly, producing a revenue stream from the sale of the electricity generated.

In one small county alone, Lancaster, Pennsylvania, with a population of just over half-a-million people, more than 4.4 billion kWh of electricity has been produced through WtE in the last 20 years. This has generated over USD $256 million through its sale to local residents.

WtE in the Middle East

Given WtE’s potential to not only reduce greenhouse gas emissions and pollution on a local scale, but also to produce much-needed electricity in the region, what is the current state of affairs in the Middle East. There are several WtE initiatives already underway in the region. Qatar was the first GCC country to implement a waste-to-energy programme and currently generates over 30MW of electricity from its Domestic Solid Waste Management Center (DSWMC) located at Messeid (Doha). Saudi Arabia and the UAE have both stated that they have WtE production capacity targets of 100MW. Bahrain, Kuwait and Oman are also seriously considering waste-to-energy as a means to tackle the worsening waste management problem.

Abu Dhabi’s government is currently spending around US $850 million to build a 100 MW plant which is expected to be operational by 2017 and which will supply around 20,000 households with electricity. In Sharjah, the world’s largest household waste gasification plant, costing in excess of US $480 million, is due to be open in 2015.

However, not all the GCC members are as enthusiastic about WtE. Dubai’s government has recently scrapped plans for a US $2 billion project which would have made use of the 7,800 tonnes of domestic waste which is produced in Dubai every single day.

We asked Salman Zafar, Founder of Doha-based EcoMENA, a popular sustainability advocacy, why given the sheer scale of the waste in the Gulf region, the production of this form of energy is still in its infancy. “The main deterrent in the implementation of WtE projects in the Middle East is the current availability of cheap sources of energy already available, especially in the GCC,” he commented.

Salman Zafar further says, “WtE projects demand a good deal of investment, heavy government subsidies, tipping fees, power purchase agreements etc, which are hard to obtain for such projects in the region.” “The absence of a sustainable waste management strategy in Middle East nations is also a vital factor behind the very slow pace of growth of the WtE sector in the region. Regional governments, municipalities and local SWM companies find it easier and cost-effective to dump untreated municipal waste in landfills,” he added.

So, how can WtE contribute towards the region’s growing power demand in the future?

“Modern WtE technologies, such as RDF-based incineration, gasification, pyrolysis, anaerobic digestion etc, all have the ability to transform power demand as well as the waste management scenario in the region,” he continued. “A typical 250 – 300 tons per day WtE plant can produce around 3 – 4 MW of electricity and a network of such plants in cities across the region can make a real difference in the energy sector as well as augmenting energy reserves in the Middle East. In fact, WtE plants also produce a tremendous about of heat energy which can be utilised in process industries, further maximising their usefulness,” Salman Zafar concluded.

New technologies naturally take time to become established as their efficiency versus cost ratios are analysed. However, it is becoming increasingly clearer that waste-to-energy is a viable and efficient method for solid waste management and generation of alternative energy in the Middle East.

Where Are All the Electric Vans?

The USA is way behind Europe when it comes to electric vehicles, with sales in Europe exceeding 1 million in 2018, while US figures stood at just 750,000. This is despite the giants of Silicon Valley, including Google, Amazon and Tesla, all making strides to offer electric vehicles to the mass market. The area where the contrast is most clear is in regards to vans. While Europe has many on offer, electric vans are almost non-existent on American roads. Where does this leave commercial enterprises looking to cut their carbon emissions?

Europe Leading the Way

Although hardly the norm, it isn’t uncommon to see fully electric commercial vehicles on European streets. German based DHL are selling over 5000 StreetScooters a year, allowing companies to offer battery powered deliveries. Meanwhile, the UK’s best selling plug in van is the Nissan e-NV200. This attractive commercial vehicle is on sale throughout Europe, selling more than 4000 a year. Unfortunately, it is not available in the US.

If you are a businessman looking to cut fossil fuel usage, while driving a commercial vehicle, then you may be better off moving to Europe. Greenhouse gases in the continent fell 22% between 1990 and 2016. The USA is struggling to keep up with the switch to renewable energy sources.

Is Tesla the Only Game in Town?

Don’t worry – it isn’t all bad news for the USA. With companies like Tesla offering their own electric pickup and semi vehicles, there could be a shift in sale trends soon. However, neither of these vehicles are yet to hit the mass market. Other electric truck or van options are few and far between. The likes of Google are focusing their efforts on creating self-drive vehicles rather than venturing into commercial electric automobiles. 

Other Ways to Cut Carbon Emissions

Keep searching for the perfect electric van for your company. If Europe has them, then you can find one in America. In the meantime, however, consider other ways to cut your carbon footprint. For the running of any electronics, invest in solar power. This has really taken off in the USA and is one of the cheapest options available. You should also try to source products locally and remove plastic packaging from your goods.

Electric vehicles really can’t arrive soon enough, but commercial vans and trucks are yet to become mainstream. The USA needs to take a leaf out of Europe’s book and invest in electric vans. In the meantime, consider switching to solar power and taking other steps to reduce your company’s carbon emissions.

Insights into MSW-to-Energy

You know the saying: One person’s trash is another’s treasure. When it comes to recovering energy from municipal solid waste — commonly called garbage or trash— that treasure can be especially useful. Instead of taking up space in a landfill, we can process our trash to produce energy to power our homes, businesses and public buildings.

In 2015, the United States got about 14 billion kilowatt-hours of electricity from burning municipal solid waste, or MSW. Seventy-one waste-to-energy plants and four additional power plants burned around 29 million tons of MSW in the U.S. that year. However, just 13 percent of the country’s waste becomes energy. Around 35 percent is recycled or composted, and the rest ends up in landfills.

Recovering Energy Through Incineration

The predominant technology for MSW-to-energy plants is incineration, which involves burning the trash at high temperatures. Similarly to how some facilities use coal or natural gas as fuel sources, power plants can also burn MSW as fuel to heat water, which creates steam, turns a turbine and produces electricity.

Several methods and technologies can play a role in burning trash to create electricity. The most common type of incineration plant is what’s called a mass-burn facility. These units burn the trash in one large chamber. The facility might sort the MSW before sending it to the combustion chamber to remove non-combustible materials and recyclables.

These mass-burn systems use excess air to facilitate mixing, and ensure air gets to all the waste. Many of these units also burn the fuel on a sloped, moving grate to mix the waste even further. These steps are vital because solid waste is inconsistent, and its content varies. Some facilities also shred the MSW before moving it to the combustion chamber.

Gasification Plants

Another method for converting trash into electricity is gasification. This type of waste-to-energy plant doesn’t burn MSW directly, but instead uses it as feedstock for reactions that produce a fuel gas known as synthesis gas, or syngas. This gas typically contains carbon monoxide, carbon dioxide, methane, hydrogen and water vapor.

Approaches to gasification vary, but typically include high temperatures, high-pressure environments, very little oxygen and shredding MSW before the process begins. Common gasification methods include:

  • Pyrolysis, which involves little to no oxygen, partial pressure and temperatures between approximately 600 and 800 degrees Celsius.
  • Air-fed systems, which use air instead of pure oxygen and temperatures between 800 and 1,800 degrees Celsius.
  • Plasma or plasma arc gasification, which uses plasma torches to increase temperatures to 2,000 to 2,800 degrees Celsius.

Syngas can be burned to create electricity, but it can also be a component in the production of transportation fuels, fertilizers and chemicals. Proponents of gasification report that it is a more efficient waste-to-energy method than incineration, and can produce around 1,000 kilowatt-hours of electricity from one ton of MSW. Incineration, on average, produces 550 kilowatt-hours.

Challenges of MSW-to-Energy

Turning trash into energy seems like an ideal solution. We have a lot of trash to deal with, and we need to produce energy. MSW-to-energy plants solve both of those problems. However, a relatively small amount of waste becomes energy, especially in the U.S.

Typical layout of MSW-to-Energy Plant

This lack may be due largely to the upfront costs of building a waste-to-energy plant. It is much cheaper in the short term to send trash straight to a landfill. Some people believe these energy production processes are just too complicated and expensive. Gasification, especially, has a reputation for being too complex.

Environmental concerns also play a role, since burning waste can release greenhouse gases. Although modern technologies can make burning waste a cleaner process, its proponents still complain it is too dirty.

Despite these challenges, as trash piles up and we continue to look for new sources of energy, waste-to-energy plants may begin to play a more integral role in our energy production and waste management processes. If we handle it responsibly and efficiently, it could become a very viable solution to several of the issues our society faces.

A Blackout, Big Oil, and Wind Energy

During the first quarter of 2017, workers installed a wind turbine somewhere in the US every 2.4 hours. Wind provided 5.6% of all the electricity produced in the US in 2016. That’s more than double the amount of wind power in 2010. The whole world is seeing similar growth.  The wind industry isn’t without controversy. Critics blame it for the scope of a blackout in Australia. On the other hand, international oil companies have begun to build off-shore wind farms.

Critics’ case against wind energy

According to its critics, wind power is unreliable. The wind doesn’t blow all the time. It doesn’t blow on any predictable pattern. Wind turbines require some minimum wind speed for them to work at all. And if the wind is too strong, they can’t operate safely and must shut down.

Wind can cross one or the other of these thresholds multiple times a day. They operate at full capacity for only a few hours a year. So the theoretical capacity of a wind farm greatly exceeds its actual output.

The times turbines can generate electricity do not coincide with rising and falling demand for electricity. This variability creates problems for stabilizing the grid. Critics further claim that the wind industry can’t operate without massive government subsidies.

Wind power and South Australia blackout of 2016?

South Australia depends on wind energy for about 40% of its electricity. It suffered seven tornados on September 28, 2016. Two of them, with winds almost as fast as Hurricane Katrina, destroyed twenty towers that held three different transmission lines. Nine wind farms shut down.  Within minutes, the entire state suffered a massive blackout.

What contributed the most to the blackout? South Australia’s high dependence on wind power? The weather? Or something else?

Renewable energy skeptics quickly claimed the blackout justified their position. The wind farms simply failed to provide enough electricity in the emergency. Wind and solar energy, they say, are inherently unreliable. South Australia’s heavy reliance demonstrates an irresponsible policy based on ideology more than technological reality.

Certainly, the weather would have caused a disturbance in electrical service no matter what source of electricity. People near the downed transmission lines could not have avoided loss of power. But prompt action by grid operators makes it possible to bypass problem areas and limit the extent of the outage.

On closer examination, however, the correct answer to the multiple-choice question above is C: something else.

Wind turbines have “low voltage ride through” settings to keep operating for brief periods when voltage dips below the threshold at which they can operate correctly. If low-voltage conditions occur too frequently, the turbines have a protection mechanism that turns them off.

  • Ten wind farms experienced between three and six low-voltage events within two minutes. But the turbines were operating on factory settings. No one performed any testing to determine good settings under local conditions.
  • The agency that regulates the Australian electricity market knew nothing about the protection feature. It blamed the wind farms, but surely someone on staff should have been familiar with the default operation of the turbines. After all, the agency approved purchase and installation of the turbines. It had all the documentation.
  • Two gas generating plants that should have supplied backup power failed to come online.

The weather caused a problem that became a crisis not because of technical limitations of renewable energy, but because of too many different organizations’ incompetence.

If the wind is too strong, wind turbines can’t operate safely and must shut down.

One homeowner in South Australia didn’t suffer from the outage. He didn’t even know about the blackout till he saw it on the news. He had to test the accuracy of the news reports by opening his oven and noting that the light didn’t come on.

It turns out he had installed solar panels just a few weeks earlier. And since power outages in his part of South Australia occur almost every month, he decided to install a Tesla Powerwall as well.

He can’t use it to power his entire house, but it takes care of the lights and the television. It stores enough electricity for 10 hours of off-grid power.

Big oil and wind power

International oil companies have not joined the chorus of wind-industry skeptics. Several of them, including Royal Dutch Shell, have begun to invest heavily in off-shore wind farms. Especially in the North Sea. Oil production there has steadily declined for about 15 years.

Exploring for new oil fields has become too risky and expensive. These oil companies have decided that investing in wind energy helps their cash flow and makes it more predictable.

Oil companies have more expertise in working on offshore platforms than do companies that specialize in wind energy. Instead of building a foundation for turbines on the ocean floor, at least one oil company has begun to explore how to mount them on floating platforms.

Traditional wind energy firms have been operating turbines in the North Sea for years, but the oil companies have begun to outbid them. Their off-shore expertise has helped them drive down their costs.

So far, American oil companies have shown less interest in wind farms. If they decide they’re in the oil business, they will eventually lose market share to renewable energy companies. If they decide they’re in the energy business, they’ll have to start investing in renewable energy. And if any decide to invest heavily in solar power besides or instead of wind, they will still be following the lead of Total, a French oil company.

For that matter, the coal business is dying. Perhaps some of them will have enough sense to invest in renewables to improve their cash flow.