Bioenergy Developments in Malaysia

Malaysia is blessed with abundant renewable sources of energy, especially biomass and solar. Under the Eighth Malaysian Plan, renewable energy was added in the energy mix to unveil a Five-Fuel Strategy to achieve 5 percent contribution by 2005.

Among the various sources of renewable energy, bioenergy seems to be the most promising option for Malaysia. The National Biofuel Policy, launched in 2006 encourages the use of environmentally friendly, sustainable and viable sources of biomass energy. Under the Five Fuel Policy, the government of Malaysia has identified biomass as one of the potential renewable energy.

Malaysia produces atleast 168 million tonnes of biomass, including timber and oil palm waste, rice husks, coconut trunk fibres, municipal waste and sugar cane waste annually. Being a major agricultural commodity producer in the region Malaysia is well positioned amongst the ASEAN countries to promote the use of biomass as a renewable energy source.

Malaysia has been one of the world’s largest producers and exporters of palm oil for the last forty years. The Palm Oil industry, besides producing Crude Palm Oil (CPO) and Palm Kernel Oil, produces Palm Shell, Press Fibre, Empty Fruit Bunches (EFB), Palm Oil Mill Effluent (POME), Palm Trunk (during replanting) and Palm Fronds (during pruning).

Malaysia has approximately 4 million hectares of land under oil palm plantation. Over 75% of total area planted is located in just four states, Sabah, Johor, Pahang and Sarawak, each of which has over half a million hectares under cultivation. The total amount of processed FFB (Fresh Fruit Bunches) was estimated to be 75 million tons while the total amount of EFB produced was estimated to be 16.6 million tons. Around 58 million tons of POME is produced in Malaysia annually, which has the potential to produce an estimated 15 billion m3 of biogas can be produced each year.

Malaysia is the world’s second largest producer of crude palm oil. Almost 70% of the volume from the processing of fresh fruit bunch is removed as wastes in the form of empty fruit bunches, palm kernel shells, palm oil mill effluent etc. With more than 451 mills in Malaysia, this palm oil industry generate around 100 million dry tonnes of biomass. Malaysia has more than 2400 MW of biomass and 410 MW of biogas potential, out of which only a fraction has been harnessed until now.

Rice husk is another important agricultural biomass resource in Malaysia with good potential for power cogeneration. An example of its attractive energy potential is biomass power plant in the state of Perlis which uses rice husk as the main source of fuel and generates 10 MW power to meet the requirements of 30,000 households. The US$15 million project has been undertaken by Bio-Renewable Power Sdn Bhd in collaboration with the Perlis state government, while technology provider is Finland’s Foster Wheeler Energia Oy.

Under the EC-ASEAN Cogeneration Program, there are three ongoing Full Scale Demonstration Projects (FSDPs) – Titi Serong, Sungai Dingin Palm Oil Mill and TSH Bioenergy – to promote biomass energy systems in Malaysia. The 1.5MW Titi Serong power plant, located at Parit Buntar (Perak), is based on rice husk while the 2MW Sungai Dingin Palm Oil Mill project make use of palm kernel shell and fibre to generate steam and electricity. The 14MW TSH Bioenergy Sdn Bhd, located at Tawau (Sabah), is the biggest biomass power plant in Malaysia and utilizes empty fruit bunches, palm oil fibre and palm kernel shell as fuel resources.

Progress of Waste-to-Energy in the USA

Rising rates of consumption necessitate an improved approach to resource management. Around the world, from Europe to Asia, governments have adapted their practices and policies to reflect renewability. They’ve invested in facilities that repurpose waste as source of energy, affording them a reliable and cheap source of energy.

This seems like progress, given the impracticality of older methods. Traditional sources of energy like fossil fuels are no longer a realistic option moving forward, not only for their finite nature but also within the context of the planet’s continued health. That said, the waste-to-energy sector is subject to scrutiny.

We’ll detail the reasons for this scrutiny, the waste-to-energy sector’s current status within the United States and speculations for the future. Through a concise analysis of obstacles and opportunities, we’ll provide a holistic perspective of the waste-to-energy progress, with a summation of its positive and negative attributes.

Status of Waste-to-Energy Sector

The U.S. currently employs 86 municipal waste-to-energy facilities across 25 states for the purpose of energy recovery. While several have expanded to manage additional waste, the last new facility opened in 1995. To understand this apparent lack of progress in the area of thermochemical treatment of MSW, budget represents a serious barrier.

One of the primary reasons behind the shortage of waste-to-energy facilities in the USA is their cost. The cost of construction on a new plant often exceeds $100 million, and larger plants require double or triple that figure to build. In addition to that, the economic benefits of the investment aren’t immediately noticeable.

The Palm Beach County Renewable Energy Facility is a RDF-based waste-to-energy (WTE) facility.

The U.S. also has a surplus of available land. Where smaller countries like Japan have limited space to work within, the U.S. can choose to pursue more financially viable options such as landfills. The expenses associated with a landfill are far less significant than those associated with a waste-to-energy facility.

Presently, the U.S. processes 14 percent of its trash in waste-to-energy (WTE) plants, which is still a substantial amount of refuse given today’s rate of consumption. On a larger scale, North America ranks third in the world in the waste-to-energy movement, behind the European nations and the Asia Pacific region.

Future of WTE Sector

Certain factors influence the framework of an energy policy. Government officials have to consider the projected increase in energy demand, concentrations of CO2 in the atmosphere, space-constrained or preferred land use, fuel availability and potential disruptions to the supply chain.

A waste-to-energy facility accounts for several of these factors, such as space constraints and fuel availability, but pollution remains an issue. Many argue that the incineration of trash isn’t an effective means of reducing waste or protecting the environment, and they have evidence to support this.

The waste-to-energy sector extends beyond MSW facilities, however. It also encompasses biofuel, which has seen an increase in popularity. The aviation industry has shown a growing dedication to biofuel, with United Airlines investing $30 million in the largest producer of aviation biofuel.

If the interest of United Airlines and other companies is any indication, the waste-to-energy sector will continue to expand. Though negative press and the high cost of waste-to-energy facilities may impede its progress, advances in technology promise to improve efficiency and reduce expenses.

Positives and Negatives

The waste-to-energy sector provides many benefits, allowing communities a method of repurposing their waste. It has negative aspects that are also important to note, like the potential for pollution. While the sector offers solutions, some of them come at a cost.

It’s true that resource management is essential, and adapting practices to meet high standards of renewability is critical to the planet’s health. However, it’s also necessary to recognize risk, and the waste-to-energy sector is not without its flaws. How those flaws will affect the sector moving forward is critical to consider.

Biomass Energy Potential in Philippines

The Philippines has abundant supplies of biomass energy resources in the form of agricultural crop residues, forest residues, animal wastes, agro-industrial wastes, municipal solid wastes and aquatic biomass. The most common agricultural wastes are rice hull, bagasse, cane trash, coconut shell/husk and coconut coir. The use of crop residues as biofuels is increasing in the Philippines as fossil fuel prices continue to rise. Rice hull is perhaps the most important, underdeveloped biomass resource that could be fully utilized in a sustainable manner.

At present, biomass technologies utilized in the country vary from the use of bagasse as boiler fuel for cogeneration, rice/coconut husks dryers for crop drying, biomass gasifiers for mechanical and electrical applications, fuelwood and agricultural wastes for oven, kiln, furnace and cook-stoves for cooking and heating purposes. Biomass technologies represent the largest installations in the Philippines in comparison with the other renewable energy, energy efficiency and greenhouse gas abatement technologies.

Biomass energy plays a vital role in the nation’s energy supply. Nearly 30 percent of the energy for the 80 million people living in the Philippines comes from biomass, mainly used for household cooking by the rural poor. Biomass energy application accounts for around 15 percent of the primary energy use in the Philippines. The resources available in the Philippines can generate biomass projects with a potential capacity of more than 200 MW.

Almost 73 percent of this biomass use is traced to the cooking needs of the residential sector while industrial and commercial applications accounts for the rest. 92 percent of the biomass industrial use is traced to boiler fuel applications for power and steam generation followed by commercial applications like drying, ceramic processing and metal production. Commercial baking and cooking applications account for 1.3 percent of its use.

The EC-ASEAN COGEN Programme estimated that the volume of residues from rice, coconut, palm oil, sugar and wood industries is 16 million tons per year. Bagasse, coconut husks and shell can account for at least 12 percent of total national energy supply. The World Bank-Energy Sector Management Assistance Program estimated that residues from sugar, rice and coconut could produce 90 MW, 40 MW, and 20 MW, respectively.

The development of crop trash recovery systems, improvement of agro-forestry systems, introduction of latest energy conversion technologies and development of biomass supply chain can play a major role in biomass energy development in the Philippines. The Philippines is among the most vulnerable nations to climatic instability and experiences some of the largest crop losses due to unexpected climatic events. The country has strong self-interest in the advancement of clean energy technologies, and has the potential to become a role model for other developing nations on account of its broad portfolio of biomass energy resources and its potential to assist in rural development.