Biomass Resources in Malaysia

Malaysia is gifted with conventional energy resources such as oil and gas as well as renewables like hydro, biomass and solar energy. As far as biomass resources in Malaysia are concerned, Malaysia has tremendous agricultural biomass and wood waste resources available for immediate exploitation. This energy potential of biomass resource is yet to be exploited properly in the country.

Taking into account the growing energy consumption and domestic energy supply constraints, Malaysia has set sustainable development and diversification of energy sources, as the economy’s main energy policy goals. The Five-Fuel Strategy recognises renewable energy resources as the economy’s fifth fuel after oil, coal, natural gas and hydro. Being a major agricultural commodity producer in the region Malaysia is well positioned amongst the ASEAN countries to promote the use of biomass as a source of renewable energy.

Major Biomass Resources in Malaysia

  • Agricultural crops e.g. sugarcane, cassava, corn
  • Agricultural residues e.g. rice straw, cassava rhizome, corncobs
  • Woody biomass e.g. fast-growing trees, wood waste from wood mill, sawdust
  • Agro-Industrial wastes e.g. rice husks from rice mills, molasses and bagasse from sugar refineries, residues from palm oil mills
  • Municipal solid waste
  • Animal manure and poultry litter

Palm Oil Biomass

Malaysia is the world’s leading exporter of palm oil, exporting more than 19.9 million tonnes of palm oil in 2017. The extraction of palm oil from palm fruits results in a large quantity of waste in the form of palm kernel shells, empty fruit bunches and mesocarp fibres. In 2011, more than 80 million tons of oil palm biomass was generated across the country.

13MW biomass power plant at a palm oil mill in Sandakan, Sabah (Malaysia)

Processing crude palm oil generates a foul-smelling effluent, called Palm Oil Mill Effluent or POME, which when treated using anaerobic processes, releases biogas. Around 58 million tons of POME is produced in Malaysia annually, which has the potential to produce an estimated 15 billion m3 of biogas.

Rice Husk

Rice husk is another important agricultural biomass resource in Malaysia with very good energy potential for biomass cogeneration. An example of its attractive energy potential is biomass power plant in the state of Perlis which uses rice husk as the main source of fuel and generates 10 MW power to meet the requirements of 30,000 households.

Municipal Solid Wastes

The per capita generation of solid waste in Malaysia varies from 0.45 to 1.44kg/day depending on the economic status of an area. Malaysian solid wastes contain very high organic waste and consequently high moisture content and bulk density of above 200kg/m3. The high rate of population growth is the country has resulted in rapid increase in solid waste generation which is usually dumped in landfills.

Conclusion

Biomass resources have long been identified as sustainable source of renewable energy particularly in countries where there is abundant agricultural activities. Intensive use of biomass as renewable energy source in Malaysia could reduce dependency on fossil fuels and significant advantage lies in reduction of net carbon dioxide emissions to atmosphere leading to less greenhouse effect. However, increased competitiveness will require large-scale investment and advances in technologies for converting this biomass to energy efficiently and economically.

The Role of Biofuel in Low-Carbon Transport

Biofuels offer a solution to climate change that shouldn’t go ignored. In fact, the amount of biofuel used in low-carbon transport has to increase by a factor of seven in order to prevent climate catastrophe, a recent report on 1.5C warming by the Intergovernmental Panel on Climate Change (IPCC) states. The report also places biofuels in the same league of importance as electric vehicles when it comes to replacing unsustainable fossil fuels by 2050.

Biofuels are increasingly being used to power vehicles around the world

Electric cars: benefits and limitations

A typical gas-powered car emits roughly one pound of carbon dioxide per mile traveled. On the other hand, electric cars release zero tailpipe emissions. However, light-duty passenger vehicles represent only 50% of the energy demand in the transportation sector worldwide.

Heavy road vehicles and air, sea, and rail transport make up the rest — electrification of this remaining 50% would be an expensive task. Additionally, demand for transport is expected to increase in the future. Vehicles will need to use even less energy by 2050 to ensure the global transport sector’s total energy demand rises no higher than current levels (100 exajoules).

Biofuel: a necessary solution

Several sustainable, carbon-neutral synthetic fuels are currently in developmental and demonstration stages. For example, synfuels can be produced from carbon dioxide and water via low-carbon electricity. However, this also requires cheap and low-carbon power systems (similar to the ones already running in Quebec and Iceland).

Biodiesel

In 2013, Audi was the first automaker to establish an electrofuel plant — it cost €20M and produces 3.2 MW of synthetic methane from 6 MW of electricity. Additionally, synthetic biofuels can be made from woody residues and crop wastes, which has a lighter environmental footprint than biofuels made from agricultural crops.

Examples of eco-friendly cars

While biofuels continue to be developed, there are plenty of electric cars on the market right now — all of which can help us reduce our individual carbon footprints. For example, the Hyundai Kona Electric is an impressive electric car. This vehicle offers sleek exterior styling, plenty of modern tech features, and has an impressive range of 258 miles in between charges. The price starts at $36,950. Alternatively, the Nissan LEAF is another eco-friendly model priced from $29,990. It’s powered by an 80kW electric motor and runs for 100 miles per charge.

Electric cars and synthetic biofuels are both valuable technological changes. Focusing on developing both of these sustainable options should take utmost priority in the fight against climate change.

Why Biofuels Should Be a Key Part in America’s Future

Biofuels are one of the hottest environmental topics, but they aren’t anything new. When discussing these fuels, experts frequently refer to first, second-and third-generation biofuels to differentiate between more efficient and advanced ones currently in development and more traditional biofuels in use for decades.

Biofuels are increasingly being used to power vehicles around the world

First-generation biofuels are things like methanol, ethanol, biodiesel and vegetable oil, while second-generation biofuels are produced by transforming crops into liquid fuels using highly advanced chemical processes, such as mixed alcohols and biohydrogen. Third-generation, or “advanced” biofuels, are created using oil that is made from algae or closed reactors and then refined to produce conventional fuels such as ethanol, methane, biodiesel, etc.

Cleaner Air and Less Impact on Climate Change

As biofuels come from renewable materials, they have less of an impact on climate change as compared to gasoline, according to multiple studies. Ethanol in gasoline has been helping to decrease smog in major cities, keeping the air cleaner and safer to breathe.

Starch-based biofuels can reduce carbon dioxide emissions by around 30- to 60-percent, as compared to gasoline, while cellulosic ethanol can lessen emissions even further, as much as 90 percent.

Reduced Danger of Environmental Disaster

Can you imagine buying one of the oceanfront Jacksonville condos in Florida, looking forward to enjoying peaceful beach strolls every morning only to find injured or killed animals and globs of oil all over the sand? Not exactly the vision of paradise you dreamed of.

A major benefit of using biofuels is the risk of environmental disaster is dramatically reduced. The 2010 Deepwater Horizon Spill that occurred in the Gulf of Mexico released millions of gallons of oil. It not only cost BP nearly $62 billion but caused extensive damage to wildlife and the environment. Biofuels are much safer. For example, a corn field won’t poison the ocean.

More Jobs and an Economic Boom

Numerous studies, including one conducted by the Renewable Fuels Association (RFA), have found that biofuels lead to more jobs for Americans. In 2014, the ethanol industry was responsible for nearly 84,000 direct jobs and over 295,000 indirect and induced jobs – all jobs that pay well and are non-exportable. The biofuels industry in the USA also added nearly $53 billion to the national GDP, $27 billion to the national GDP and over $10 billion in taxes, stimulating local, state and national economies.

Many experts predict that these figures will increase with significant job creation potential in biorefinery construction, operation and biomass collection. If the potential for producing cellulosic ethanol from household waste and forestry residues were utilized at commercial scale, even more jobs are likely to be added.

Energy Independence

When a nation has the land resources to grow biofuel feedstock, it is able to produce its own energy, eliminating dependence on fossil fuel resources. Considering the significant amount of conflict that tends to happen over fuel prices and supplies, this brings a net positive effect.

Bioenergy Developments in Malaysia

Malaysia is blessed with abundant renewable sources of energy, especially biomass and solar. Under the Eighth Malaysian Plan, renewable energy was added in the energy mix to unveil a Five-Fuel Strategy to achieve 5 percent contribution by 2005.

Among the various sources of renewable energy, bioenergy seems to be the most promising option for Malaysia. The National Biofuel Policy, launched in 2006 encourages the use of environmentally friendly, sustainable and viable sources of biomass energy. Under the Five Fuel Policy, the government of Malaysia has identified biomass as one of the potential renewable energy.

Malaysia produces atleast 168 million tonnes of biomass, including timber and oil palm waste, rice husks, coconut trunk fibres, municipal waste and sugar cane waste annually. Being a major agricultural commodity producer in the region Malaysia is well positioned amongst the ASEAN countries to promote the use of biomass as a renewable energy source.

Malaysia has been one of the world’s largest producers and exporters of palm oil for the last forty years. The Palm Oil industry, besides producing Crude Palm Oil (CPO) and Palm Kernel Oil, produces Palm Shell, Press Fibre, Empty Fruit Bunches (EFB), Palm Oil Mill Effluent (POME), Palm Trunk (during replanting) and Palm Fronds (during pruning).

Malaysia has approximately 4 million hectares of land under oil palm plantation. Over 75% of total area planted is located in just four states, Sabah, Johor, Pahang and Sarawak, each of which has over half a million hectares under cultivation. The total amount of processed FFB (Fresh Fruit Bunches) was estimated to be 75 million tons while the total amount of EFB produced was estimated to be 16.6 million tons. Around 58 million tons of POME is produced in Malaysia annually, which has the potential to produce an estimated 15 billion m3 of biogas can be produced each year.

Malaysia is the world’s second largest producer of crude palm oil. Almost 70% of the volume from the processing of fresh fruit bunch is removed as wastes in the form of empty fruit bunches, palm kernel shells, palm oil mill effluent etc. With more than 451 mills in Malaysia, this palm oil industry generate around 100 million dry tonnes of biomass. Malaysia has more than 2400 MW of biomass and 410 MW of biogas potential, out of which only a fraction has been harnessed until now.

Rice husk is another important agricultural biomass resource in Malaysia with good potential for power cogeneration. An example of its attractive energy potential is biomass power plant in the state of Perlis which uses rice husk as the main source of fuel and generates 10 MW power to meet the requirements of 30,000 households. The US$15 million project has been undertaken by Bio-Renewable Power Sdn Bhd in collaboration with the Perlis state government, while technology provider is Finland’s Foster Wheeler Energia Oy.

Under the EC-ASEAN Cogeneration Program, there are three ongoing Full Scale Demonstration Projects (FSDPs) – Titi Serong, Sungai Dingin Palm Oil Mill and TSH Bioenergy – to promote biomass energy systems in Malaysia. The 1.5MW Titi Serong power plant, located at Parit Buntar (Perak), is based on rice husk while the 2MW Sungai Dingin Palm Oil Mill project make use of palm kernel shell and fibre to generate steam and electricity. The 14MW TSH Bioenergy Sdn Bhd, located at Tawau (Sabah), is the biggest biomass power plant in Malaysia and utilizes empty fruit bunches, palm oil fibre and palm kernel shell as fuel resources.

Progress of Waste-to-Energy in the USA

Rising rates of consumption necessitate an improved approach to resource management. Around the world, from Europe to Asia, governments have adapted their practices and policies to reflect renewability. They’ve invested in facilities that repurpose waste as source of energy, affording them a reliable and cheap source of energy.

This seems like progress, given the impracticality of older methods. Traditional sources of energy like fossil fuels are no longer a realistic option moving forward, not only for their finite nature but also within the context of the planet’s continued health. That said, the waste-to-energy sector is subject to scrutiny.

We’ll detail the reasons for this scrutiny, the waste-to-energy sector’s current status within the United States and speculations for the future. Through a concise analysis of obstacles and opportunities, we’ll provide a holistic perspective of the waste-to-energy progress, with a summation of its positive and negative attributes.

Status of Waste-to-Energy Sector

The U.S. currently employs 86 municipal waste-to-energy facilities across 25 states for the purpose of energy recovery. While several have expanded to manage additional waste, the last new facility opened in 1995. To understand this apparent lack of progress in the area of thermochemical treatment of MSW, budget represents a serious barrier.

One of the primary reasons behind the shortage of waste-to-energy facilities in the USA is their cost. The cost of construction on a new plant often exceeds $100 million, and larger plants require double or triple that figure to build. In addition to that, the economic benefits of the investment aren’t immediately noticeable.

The Palm Beach County Renewable Energy Facility is a RDF-based waste-to-energy (WTE) facility.

The U.S. also has a surplus of available land. Where smaller countries like Japan have limited space to work within, the U.S. can choose to pursue more financially viable options such as landfills. The expenses associated with a landfill are far less significant than those associated with a waste-to-energy facility.

Presently, the U.S. processes 14 percent of its trash in waste-to-energy (WTE) plants, which is still a substantial amount of refuse given today’s rate of consumption. On a larger scale, North America ranks third in the world in the waste-to-energy movement, behind the European nations and the Asia Pacific region.

Future of WTE Sector

Certain factors influence the framework of an energy policy. Government officials have to consider the projected increase in energy demand, concentrations of CO2 in the atmosphere, space-constrained or preferred land use, fuel availability and potential disruptions to the supply chain.

A waste-to-energy facility accounts for several of these factors, such as space constraints and fuel availability, but pollution remains an issue. Many argue that the incineration of trash isn’t an effective means of reducing waste or protecting the environment, and they have evidence to support this.

The waste-to-energy sector extends beyond MSW facilities, however. It also encompasses biofuel, which has seen an increase in popularity. The aviation industry has shown a growing dedication to biofuel, with United Airlines investing $30 million in the largest producer of aviation biofuel.

If the interest of United Airlines and other companies is any indication, the waste-to-energy sector will continue to expand. Though negative press and the high cost of waste-to-energy facilities may impede its progress, advances in technology promise to improve efficiency and reduce expenses.

Positives and Negatives

The waste-to-energy sector provides many benefits, allowing communities a method of repurposing their waste. It has negative aspects that are also important to note, like the potential for pollution. While the sector offers solutions, some of them come at a cost.

It’s true that resource management is essential, and adapting practices to meet high standards of renewability is critical to the planet’s health. However, it’s also necessary to recognize risk, and the waste-to-energy sector is not without its flaws. How those flaws will affect the sector moving forward is critical to consider.

Biomass Energy Potential in Philippines

The Philippines has abundant supplies of biomass energy resources in the form of agricultural crop residues, forest residues, animal wastes, agro-industrial wastes, municipal solid wastes and aquatic biomass. The most common agricultural wastes are rice hull, bagasse, cane trash, coconut shell/husk and coconut coir. The use of crop residues as biofuels is increasing in the Philippines as fossil fuel prices continue to rise. Rice hull is perhaps the most important, underdeveloped biomass resource that could be fully utilized in a sustainable manner.

At present, biomass technologies utilized in the country vary from the use of bagasse as boiler fuel for cogeneration, rice/coconut husks dryers for crop drying, biomass gasifiers for mechanical and electrical applications, fuelwood and agricultural wastes for oven, kiln, furnace and cook-stoves for cooking and heating purposes. Biomass technologies represent the largest installations in the Philippines in comparison with the other renewable energy, energy efficiency and greenhouse gas abatement technologies.

Biomass energy plays a vital role in the nation’s energy supply. Nearly 30 percent of the energy for the 80 million people living in the Philippines comes from biomass, mainly used for household cooking by the rural poor. Biomass energy application accounts for around 15 percent of the primary energy use in the Philippines. The resources available in the Philippines can generate biomass projects with a potential capacity of more than 200 MW.

Almost 73 percent of this biomass use is traced to the cooking needs of the residential sector while industrial and commercial applications accounts for the rest. 92 percent of the biomass industrial use is traced to boiler fuel applications for power and steam generation followed by commercial applications like drying, ceramic processing and metal production. Commercial baking and cooking applications account for 1.3 percent of its use.

The EC-ASEAN COGEN Programme estimated that the volume of residues from rice, coconut, palm oil, sugar and wood industries is 16 million tons per year. Bagasse, coconut husks and shell can account for at least 12 percent of total national energy supply. The World Bank-Energy Sector Management Assistance Program estimated that residues from sugar, rice and coconut could produce 90 MW, 40 MW, and 20 MW, respectively.

The development of crop trash recovery systems, improvement of agro-forestry systems, introduction of latest energy conversion technologies and development of biomass supply chain can play a major role in biomass energy development in the Philippines. The Philippines is among the most vulnerable nations to climatic instability and experiences some of the largest crop losses due to unexpected climatic events. The country has strong self-interest in the advancement of clean energy technologies, and has the potential to become a role model for other developing nations on account of its broad portfolio of biomass energy resources and its potential to assist in rural development.