The Role of Biofuel in Low-Carbon Transport

Biofuels offer a solution to climate change that shouldn’t go ignored. In fact, the amount of biofuel used in transport has to increase by a factor of seven in order to prevent climate catastrophe, a recent report on 1.5C warming by the Intergovernmental Panel on Climate Change (IPCC) states. The report also places biofuels in the same league of importance as electric vehicles when it comes to replacing unsustainable fossil fuels by 2050.

Biofuels are increasingly being used to power vehicles around the world

Electric cars: benefits and limitations

A typical gas-powered car emits roughly one pound of carbon dioxide per mile traveled. On the other hand, electric cars release zero tailpipe emissions. However, light-duty passenger vehicles represent only 50% of the energy demand in the transportation sector worldwide.

Heavy road vehicles and air, sea, and rail transport make up the rest — electrification of this remaining 50% would be an expensive task. Additionally, demand for transport is expected to increase in the future. Vehicles will need to use even less energy by 2050 to ensure the global transport sector’s total energy demand rises no higher than current levels (100 exajoules).

Biofuel: a necessary solution

Several sustainable, carbon-neutral synthetic fuels are currently in developmental and demonstration stages. For example, synfuels can be produced from carbon dioxide and water via low-carbon electricity. However, this also requires cheap and low-carbon power systems (similar to the ones already running in Quebec and Iceland).


In 2013, Audi was the first automaker to establish an electrofuel plant — it cost €20M and produces 3.2 MW of synthetic methane from 6 MW of electricity. Additionally, synthetic biofuels can be made from woody residues and crop wastes, which has a lighter environmental footprint than biofuels made from agricultural crops.

Examples of eco-friendly cars

While biofuels continue to be developed, there are plenty of electric cars on the market right now — all of which can help us reduce our individual carbon footprints. For example, the Hyundai Kona Electric is an impressive electric car. This vehicle offers sleek exterior styling, plenty of modern tech features, and has an impressive range of 258 miles in between charges. The price starts at $36,950. Alternatively, the Nissan LEAF is another eco-friendly model priced from $29,990. It’s powered by an 80kW electric motor and runs for 100 miles per charge.

Electric cars and synthetic biofuels are both valuable technological changes. Focusing on developing both of these sustainable options should take utmost priority in the fight against climate change.

Why Biofuels Should Be a Key Part in America’s Future

Biofuels are one of the hottest environmental topics, but they aren’t anything new. When discussing these fuels, experts frequently refer to first, second-and third-generation biofuels to differentiate between more efficient and advanced ones currently in development and more traditional biofuels in use for decades.

Biofuels are increasingly being used to power vehicles around the world

First-generation biofuels are things like methanol, ethanol, biodiesel and vegetable oil, while second-generation biofuels are produced by transforming crops into liquid fuels using highly advanced chemical processes, such as mixed alcohols and biohydrogen. Third-generation, or “advanced” biofuels, are created using oil that is made from algae or closed reactors and then refined to produce conventional fuels such as ethanol, methane, biodiesel, etc.

Cleaner Air and Less Impact on Climate Change

As biofuels come from renewable materials, they have less of an impact on climate change as compared to gasoline, according to multiple studies. Ethanol in gasoline has been helping to decrease smog in major cities, keeping the air cleaner and safer to breathe. Starch-based biofuels can reduce carbon dioxide emissions by around 30- to 60-percent, as compared to gasoline, while cellulosic ethanol can lessen emissions even further, as much as 90 percent.

Reduced Danger of Environmental Disaster

Can you imagine buying one of the oceanfront Jacksonville condos in Florida, looking forward to enjoying peaceful beach strolls every morning only to find injured or killed animals and globs of oil all over the sand? Not exactly the vision of paradise you dreamed of.

A major benefit of using biofuels is the risk of environmental disaster is dramatically reduced. The 2010 Deepwater Horizon Spill that occurred in the Gulf of Mexico released millions of gallons of oil. It not only cost BP nearly $62 billion but caused extensive damage to wildlife and the environment. Biofuels are much safer. For example, a corn field won’t poison the ocean.

More Jobs and an Economic Boom

Numerous studies, including one conducted by the Renewable Fuels Association (RFA), have found that biofuels lead to more jobs for Americans. In 2014, the ethanol industry was responsible for nearly 84,000 direct jobs and over 295,000 indirect and induced jobs – all jobs that pay well and are non-exportable. The industry also added nearly $53 billion to the national GDP, $27 billion to the national GDP and over $10 billion in taxes, stimulating local, state and national economies.

Many experts predict that these figures will increase with significant job creation potential in biorefinery construction, operation and biomass collection. If the potential for producing cellulosic ethanol from household waste and forestry residues were utilized at commercial scale, even more jobs are likely to be added.

Energy Independence

When a nation has the land resources to grow biofuel feedstock, it is able to produce its own energy, eliminating dependence on fossil fuel resources. Considering the significant amount of conflict that tends to happen over fuel prices and supplies, this brings a net positive effect.