Waste Management in Peshawar

Peshawar is among the biggest cities in Pakistan with estimated population of 4 million inhabitants. Like most of the cities in Pakistan, solid waste management is a big challenge in Peshawar as the city generate 600-700 tons of municipal waste every day. with per capita generation of about 0.3 to 0.4 kg per day. Major part of the Peshawar population belongs to low and middle income area and based upon this fact, waste generation rate per capita varies in different parts of the city.

Municipal solid waste collection and disposal services in the city are poor as approximately 60 per cent of the solid wastes remain at collection points, or in streets, where it emits a host of pollutants into the air, making it unacceptable for breathing. A significant fraction of the waste is dumped in an old kiln depression around the southern side of the city where scavengers, mainly comprising young children, manually sort out recyclable materials such as iron, paper, plastics, old clothes etc.

Peshawar has 4 towns and 84 union councils (UCs). Solid waste management is one of their functions. Now city government has planned to build a Refuse Derived Fuel (RDF), Composting Plant and possibly a Waste to Energy Power Plant which would be a land mark of Peshawar city administration.

The UCs are responsible for door to door collection of domestic waste and a common shifting practice with the help of hand carts to a central pick-up points in the jurisdiction of each UC. Town Council is responsible for collection and transporting the mixed solid waste to the specified dumps which ends up at unspecified depressions, agricultural land and roadside dumps.

Open dumping of municipal wastes is widely practiced in Peshawar

Presently, there are two sites namely Hazar Khwani and Lundi Akhune Ahmed which are being used for the purpose of open dumping. Scavenging is a major activity of thousands of people in the city. An alarming and dangerous practice is the burning of the solid waste in open dumps by scavengers to obtain recyclables like glass and metals.

Almost 50 percent of recyclables are scavenged at transfer stations from the waste reaching at such points. The recyclable ratio that remains in the house varies and cannot be recovered by the authorities unless it is bought directly from the households. Only the part of recyclables reaching a certain bin or secondary transfer station can be exploited.

In some areas of city where waste is transported by private companies from transfer points to the disposal site out study found that scavengers could only get about 35% of the recyclables from the waste at transfer station. Considering the above fact, it can be inferred that in case municipality introduces efficient waste transfer system in the city, the amount of recyclables reaching the disposal facility may increase by 30% of the current amount. In case house-to-house collection is introduced the municipality will be able to take hold of 90% of the recyclables in the waste stream being generated from a household.

Bagasse-Based Cogeneration in Pakistan: Challenges and Opportunities

Considering the fact that Pakistan is among the world’s top-10 sugarcane producers, the potential of generating electricity from bagasse is huge.  Almost all the sugar mills in Pakistan have in-house plants for cogeneration but they are inefficient in the consumption of bagasse. If instead, high pressure boilers are installed then the production capacity can be significantly improved with more efficient utilization of bagasse.

However, due to several reasons; mostly due to financing issues, the sugar mill owners were not able to set up these plants. Only recently, after financial incentives have been offered and a tariff rate agreed upon between the government and mill owners, are these projects moving ahead.

The sugar mill owners are more than willing to supply excess electricity generated form the in-house power plants to the national grid but were not able to before, because they couldn’t reach an agreement with the government over tariff. The demand for higher tariff was justified because of large investments in setting up new boilers. It would also have saved precious foreign exchange which is spent on imported oil.

By estimating the CDM potential of cogeneration (or CHP) projects based on biofuels, getting financing for these projects would be easier. Renewable energy projects can be developed through Carbon Development Mechanism or any other carbon credit scheme for additional revenue.

Since bagasse is a clean fuel which emits very little carbon emissions it can be financed through Carbon Development Mechanism. One of the reasons high cogeneration power plants are difficult to implement is because of the high amount of costs associated. The payback period for the power plants is unknown which makes the investors reluctant to invest in the high cogeneration project. CDM financing can help improve the rate of return of the project.

Bagasse power plants generate Carbon Emission Reductions in 2 ways; one by replacing electricity produced from fossil fuels.  Secondly if not used as a fuel, it would be otherwise disposed off in an unsafe manner and the methane emissions present in biomass would pollute the environment far more than CO2 does.

Currently there are around 83 sugar mills in Pakistan producing about 3.5 million metric tons of sugar per annum with total crushing capacity 597900 TCD, which can produce approximately 3000 MW during crop season Although it may seem far-fetched at the moment, if the government starts to give more attention to  sugar industry biomass rather than coal, Pakistan can fulfill its energy needs without negative repercussions or damage to the environment.

However some sugar mills are opting to use coal as a secondary fuel since the crushing period of sugarcane lasts only 4 months in Pakistan. The plants would be using coal as the main fuel during the non-crushing season. The CDM effect is reduced with the use of coal. If a high cogeneration plant is using even 80% bagasse and 20% of coal then the CERs are almost nullified. If more than 20% coal is used then the CDM potential is completely lost because the emissions are increased. However some sugar mills are not moving ahead with coal as a secondary fuel because separate tariff rates have to be obtained for electricity generation if coal is being used in the mix which is not easily obtained.

Pakistan has huge untapped potential for bagasse-based power generation

One of the incentives being offered by the State Bank of Pakistan is that if a project qualifies as a renewable project it is eligible to get loan at 6% instead of 12%. However ones drawback is that, in order to qualify as a renewable project, CDM registration of a project is not taken into account.

Although Pakistan is on the right track by setting up high cogeneration power plants, the use of coal as a secondary fuel remains debatable.  The issue that remains to be addressed is that with such huge amounts of investment on these plants, how to use these plants efficiently during non-crushing period when bagasse is not available. It seems almost counter-productive to use coal on plants which are supposed to be based on biofuels.

Conclusion

With the demand for energy in Pakistan growing, the country is finally exploring alternatives to expand its power production. Pakistan has to rely largely on fossils for their energy needs since electricity generation from biomass energy sources is considered to be an expensive option despite abundance of natural resources. However by focusing on growing its alternate energy options such as bagasse-based cogeneration, the country will not only mitigate climate change but also tap the unharnessed energy potential of sugar industry biomass.

Solid Waste Management in Pakistan

Karachi-Garbage-DumpSolid waste management situation in Pakistan is a matter of grave concern as more than 5 million people to die each year due to waste-related diseases. In Pakistan roughly 20 million tons of solid waste is generated annually, with annual growth rate of about 2.4 percent. Karachi, largest city in the country, generates more than 9,000 tons of municipal waste daily. All major cities, be it Islamabad, Lahore or Peshawar, are facing enormous challenges in tackling the problem of urban waste. The root factors for the worsening garbage problem in Pakistan are lack of urban planning, outdated infrastructure, lack of public awareness and endemic corruption.

Contributing Factors

Being the 6th most populated country in the world; there is a lot of consumerism and with it a great deal of waste being produced. Like other developing countries, waste management sector in Pakistan is plagued by a wide variety of social, cultural, legislative and economic issues.  In the country, more waste is being produced than the number of facilities available to manage it. Some of the major problems are:

  • There is no proper waste collection system
  • Waste is dumped on the streets
  • Different types of waste are not collected separately
  • There are no controlled sanitary landfill sites. Opening burning is common.
  • Citizens are not aware of the relationship between reckless waste disposal and resulting environmental and public health problems

As a result of these problems, waste is accumulating and building up on roadsides, canals, and other common areas and burning trash is common, causing hazardous toxins to be exposed thereby threatening human and environmental health. Among the already few landfill sites that are present, even fewer are in operation. Even within Pakistan’s capital, Islamabad, there are no permanent landfills to be found.

The waste on the roads allows for an ideal environment for various flies to thrive which effects both human health and the health of the environment for other species. The poor solid waste management in Pakistan has caused numerous diseases and environmental problems to rise.

Waste Management Situation in Lahore

In Lahore, the capital of Punjab and the second largest city in Pakistan, there are currently no controlled waste disposal facilities are formal recycling systems, though roughly 27% of waste (by weight) is recycled through the informal sector, Lahore does not have very high performing governmental management in the waste management situation. Instead, the City District Government Lahore established the Lahore Waste Management Company and left the responsibility of the Solid Waste Management in Lahore to them. Beginning in 2011, Lahore Waste Management Company strives to develop a system of SWM that ensures productive collection, recovery, transportation, treatment and disposal of the waste in Lahore.

Lahore Waste Management Company (LWMC) has over 10,000 field workers involved in waste collection and disposal. Though the LWMC is working in phases, 100% collection rates are not seen yet. Lahore currently only has three disposal sites which are no more than dumps, where illegal dumping and trash burning is common. However, there is some resource recovery taking place. It is estimated that 27% of dry recyclables are informally recycled within the city. Additionally a composting plant converts 8% of waste into compost.

In general, the governance over the Waste Management in Lahore is hardly present. Though there are current projects and plans taking place, by the Lahore Waste Management Company for example, in order to achieve a productive and sustainable system in the city it is necessary for all service providers (formal, private, and informal) to take part in decisions and actions.

Current Activities and Projects

According to the United Nations Environment Program, there are six current activities and plans taking place towards an efficient Waste Management System. These current activities are as follows:

  • Solid Waste Management Guidelines (draft) prepared with the support of Japan International Cooperation Agency (JICA), Japan.
  • Converting waste agricultural biomass into energy/ material source – project by UNEP, IETC Japan.
  • North Sindh Urban Services Corporation Limited (NSUSC) – Assisting the district government in design and treatment of water supply, sanitation and solid waste management
  • The URBAN UNIT, Urban Sector Policy & Management Unit P & D Department, Punjab. Conducting different seminars on awareness of waste water, sanitation & solid waste management etc.
  • Lahore Compost (Pvt.) Ltd. only dealing with the organic waste with the cooperation of city district government Lahore, Pakistan. The company is registered as a CDM project with UNFCCC.
  • Different NGOs are involved at small scale for solid waste collection, and recycling.

Additionally, in November 2013 a German company, agreed to invest in the installation of a 100 megawatt power plant which generates energy from waste from Lahore. Progress is being made on the country’s first scientific waste disposal site in Lakhodair. With this in mind, the Lahore Waste Management Company considered other possible technologies for their Waste-to-Energy project. They opened up applications for international companies to hire as the official consultant for LWMC and their project. The results of the feasibility study results showed that the power plant has the potential to process 1035 tons of municipal waste daily, and generate 550 megawatt electricity daily.

The Way Forward

Although SWM policies do exist, the levels at which they are implemented and enforced lack as a result of the governmental institutions lacking resources and equipment. These institutions are primarily led by public sector workers and politicians who are not necessarily the most informed on waste management. For improvements in municipal solid waste management, it is necessary for experts to become involved and assist in the environmental governance.

Due to the multiple factors contributing to the solid waste accumulation, the problem has become so large it is beyond the capacity of municipalities. The former director of the Pakistan Council of Scientific and Industrial Research, Dr. Mirza Arshad Ali Beg, stated, “The highly mismanaged municipal solid waste disposal system in Pakistan cannot be attributed to the absence of an appropriate technology for disposal but to the fact that the system has a lot of responsibility but no authority.” Laws and enforcement need to be revised and implemented. The responsibility for future change is in the hands of both the government, and the citizens.

Waste practices in the Pakistan need to be improved. This can start with awareness to the public of the health and environment impacts that dumped and exposed waste causes. It is imperative for the greater public to become environmentally educated, have a change in attitude and take action.

References

http://www.aljazeera.com/indepth/features/2014/08/solid-waste-pakistan-karachi-2014867512833362.html

http://www.iamcivilengineer.com/2014/04/solid-waste-disposal-and-collection.html

http://epd.punjab.gov.pk/solid_waste

http://www.aljazeera.com/indepth/features/2014/08/solid-waste-pakistan-karachi-2014867512833362.html

http://www.iamcivilengineer.com/2014/04/solid-waste-disposal-and-collection.html

http://www.lwmc.com.pk/about-us.php

http://www.unep.org/ietc/Portals/136/Events/ISWM%20GPWM%20Asia%20Pacific%20Workshop/Pakistan_Presentation.pdf

http://www.dawn.com/news/1081689

http://www.lwmc.com.pk/waste-to-energy.php

Biomass Energy Potential in Pakistan

Being an agricultural economy, biomass energy potential in Pakistan is highly promising. Pakistan is experiencing a severe energy crisis these days which is resulting in adverse long term economic and social problems. The electricity and gas shortages have directly impacted the common man, industry and commercial activities.

The high cost of energy mix is the main underlying reason behind the power crisis. The main fuel for the local power industry is natural gas however due to the continued depletion of this source and demands elsewhere the power generation companies are now dependent on furnace oil which is relatively expensive.

The way out of this crisis is to look for fuel sources which are cheap and abundantly available within the country. This description and requirement is fulfilled by biomass resources which have been largely ignored in the past and are also available in sufficient quantities to tackle the energy crisis prevailing in the country.

Biomass Energy in Pakistan

The potential to produce power from biomass resources is very promising in Pakistan. Being an agrarian economy, more than 60% of the population is involved in agricultural activities in the country. As per World Bank statistics, around 26,280,000 hectares of land is under cultivation in Pakistan. The major sources of biomass energy are crop residues, animal manure and municipal solid wastes

Agricultural Residues

Wheat straw, rice husk, rice straw, cane trash, bagasse, cotton sticks are some of the major crop residues in Pakistan. Sugar cane is a major crop in the country and grown on a wide scale throughout Pakistan. During 2010-2011, the area under sugarcane cultivation was 1,029,000 hectares which is 4% of the total cropped area.

Sugarcane trash which constitutes 10% of the sugar cane is currently burned in the fields. During the year 2010-11, around 63,920,000 metric tons of sugarcane was grown in Pakistan which resulted in trash generation of around 5,752,800 metric tons. As per conservation estimates, the bioenergy potential of cane trash is around 9,475 GWh per year.

Cotton is another major cash crop in Pakistan and is the main source of raw material to the local textile industry. Cotton is grown on around 11% of the total cropped area in the country. The major residue from cotton crop is cotton sticks which is he material left after cotton picking and constitute as much as 3 times of the cotton produced.

Majority of the cotton sticks are used as domestic fuel in rural areas so only one-fourth of the total may be considered as biomass energy resource. The production of cotton sticks during 2010-2011 was approximately 1,474,693 metric tons which is equivalent to power generation potential of around 3,071 GWh.

Cotton sticks constitute as much as 3 times of the cotton produced.

Animal Manure

Pakistan is the world’s fourth largest producer of milk. The cattle and dairy population is around 67,294,000 while the animal manure generation is estimated at 368,434,650 metric tons. Biogas generation from animal manure is a very good proposition for Pakistan as the country has the potential to produce electrical energy equivalent to 23,654 GWh

Municipal Solid Waste

The generation or solid wastes in 9 major urban centers is around 7.12 million tons per annum which is increasing by 2.5% per year due to rapid increase in population and high rate of industrialization. The average calorific value of MSW in Pakistan is 6.89 MJ/kg which implies power generation potential of around 13,900 GWh per annum.