33 Foot Whale Dies From Eating Rubbish

garbage-oceanThis is a true and very sad rubbish clearance story. While this particular incident is certainly a case of “a picture is worth a thousand words” (or more!), we hope that our words give ammunition to those who are working toward positive change to keep our waste removal out of our oceans.

A Gruesome Ghastly Sight

Usually, the sight of a majestic sperm whale is such a magical moment, most people try to freeze frame the image in their mind. In fact, many people stop breathing momentarily they are so excited to see such a magnificent creature! However, this was not the reaction people had on February 27 when a thirty-three foot, totally emaciated, sperm whale washed up dead on Cabo de Palos Beach in southwestern Spain. It was not at all a wondrous sight… it was a gruesome ghastly sight… one of those images that people would prefer to block from their mind but can’t no matter how hard they try!

The sight of this gigantic creature, lying there dead, the life sucked out of it from eating our rubbish clearance, is heartbreaking to everyone who has viewed the scene either in person or via picture. It sent shock waves across the environmental community. Many shared images of the ghostly dead sperm whale on social media. All who saw it seemed utterly horrified, many vowing to do something about it. The mantra seemed to be “Shame on us for allowing this to happen!”

The deceased sperm whale, a juvenile male, weighed in at 6.5 metric tonnes (14,330 pounds, 5900 kilograms). While this may seem massive to a human weighting a mere 175 pounds, it is about seven times less than what male sperm whales usually weigh. He weighed so much less than a juvenile male sperm whale is supposed to weigh, the idiomatic expression, “he was skin and bones,” would not even begin to cover his physical state. It was quite obvious from the pictures that he literally starved to death.

Cause of such a grueling death

Experts at the El Valle Wildlife Recovery Centre  determined that his stomach and intestines were filled with twenty-nine kilograms (sixty-four pounds) of garbage! These included discarded cans, netting, ropes, and plastic bags. With all this rubbish clearance compacting his digestive system, he could not digest real food and he starved to death. In addition, he had a severe stomach infection, most likely because one of the rubbish clearance items he swallowed ripped a tear in his stomach lining.

The pain and torture this young sperm whale must have endured before he finally died and washed ashore to shame humanity must have been extensive. How unjust it is to this creature to not only die but actually die in a way that was very likely slow and tremendously painful.

What do we as humans owe his species for the sin of his death? Should his death be the impetus to do more to rid our oceans of rubbish removal? Should we plaster this image of this whales lifeless emaciated body on anti-litter posters even though it makes us feel awkward and ashamed to see it?

Sperm Whale – A Magnificent Creature

Sperm whales have been forever immortalized in the great novel, Moby Dick, so they will live for eternity on in the human psyche even if they go extinct. However, unlike the dinosaurs that roamed our planet before our time, and went extinct long before we made our great migration out of Africa into the fertile crescent, sperm whales have shared our planet for all of human history.

Many members of our species have come eye to eye with this beast and we must answer for our crimes of littering that has been proven to be the direct cause of this whales death, and in fact, threatens his entire species.

The International Union for Conservation of Nature (IUCN) classifies the conservation status of sperm whales as “vulnerable” which is only one small step away from becoming endangered — and some experts actually argue that sperm whales are already endangered. While it is impossible to do an accurate census of sperm whales, scientists estimate there about 200,000 of these whales left. Keep in mind, there used to be many millions of them in our oceans but they were a favorite of whaling expeditions who hunted them for their valuable blubber, meat, and even their bones.

Sperm whales are now protected under international law so most countries no longer hunt them. However, the Japanese still have a taste for sperm whale and several are harvested for supposed “scientific research” every year. The whale meat from these scientific specimens does get sold in Japanese markets. However, even given this loophole in the law that protects sperm whales, the direct human harvesting of sperm whales pales in comparison to how threatening our rubbish clearance is to the endurance of this species.

Time for Introspection

The sperm whale that washed up dead on Cabo de Palos Beach is only one of many who have died due to eating rubbish clearance. Plastic bags are the biggest culprit but all rubbish in our oceans poses a dire threat to sperm whales and other marine mammals. What we do about our rubbish clearance problem over the next few decades will likely determine the fate of this entire species and many other marine mammals.

The stomach and intestines of sperm whale was filled with 29 kg of garbage

It is important to note how intelligent sperm whales are though to be. Sperm whales have the biggest brains in the animal kingdom, weighing in at five times that of the human brain, with an imposing volume of eight thousand cubic centimeters! They’re also known to express obvious emotions. What would they say to use if we could somehow crack the sperm whale language code? Would they beg us to remove our rubbish from their habitat? Would they appeal to our better angels?

Identifying the Enemies

Sperm whales eat mostly “garden variety” squid, less than a foot in length, but in an ironic twist, their worst enemy is thought to be the giant squid. These colossal squid are usually between ten to thirteen metres (33 to 43 feet). Serrated sucker scars from these ginormous squid are often found on sperm whale bodies. While sperm whales may eat these giant squid, they put up a good fight at minimum and may even be able to kill, or at least harm significantly, a sperm whale at times.

However, the rubbish clearance that we as humans fill our oceans with cause more damage to sperm whales than all the giant squid in the world. We must face the hard reality that our rubbish clearance is directly responsible for the death of sperm whales, and many other marine mammals, and many other animal species for that matter. We must own up to that fact and start seriously working toward finding solutions.

If you have pictures of sperm whales, please send them to Clearabee’s Facebook page in honor of the most recent sperm whale death at the hands of our rubbish clearance. Clearabee is the leading on demand rubbish clearance company in the UK. Clearabee is very supportive of conservation projects that involve protecting our planet and wildlife from the destructive forces of our rubbish clearance.

Waste Management in Peshawar

Peshawar is among the biggest cities in Pakistan with estimated population of 4 million inhabitants. Like most of the cities in Pakistan, solid waste management is a big challenge in Peshawar as the city generate 600-700 tons of municipal waste every day. with per capita generation of about 0.3 to 0.4 kg per day. Major part of the Peshawar population belongs to low and middle income area and based upon this fact, waste generation rate per capita varies in different parts of the city.

Municipal solid waste collection and disposal services in the city are poor as approximately 60 per cent of the solid wastes remain at collection points, or in streets, where it emits a host of pollutants into the air, making it unacceptable for breathing. A significant fraction of the waste is dumped in an old kiln depression around the southern side of the city where scavengers, mainly comprising young children, manually sort out recyclable materials such as iron, paper, plastics, old clothes etc.

Peshawar has 4 towns and 84 union councils (UCs). Solid waste management is one of their functions. Now city government has planned to build a Refuse Derived Fuel (RDF), Composting Plant and possibly a Waste to Energy Power Plant which would be a land mark of Peshawar city administration.

The UCs are responsible for door to door collection of domestic waste and a common shifting practice with the help of hand carts to a central pick-up points in the jurisdiction of each UC. Town Council is responsible for collection and transporting the mixed solid waste to the specified dumps which ends up at unspecified depressions, agricultural land and roadside dumps.

Open dumping of municipal wastes is widely practiced in Peshawar

Presently, there are two sites namely Hazar Khwani and Lundi Akhune Ahmed which are being used for the purpose of open dumping. Scavenging is a major activity of thousands of people in the city. An alarming and dangerous practice is the burning of the solid waste in open dumps by scavengers to obtain recyclables like glass and metals.

Almost 50 percent of recyclables are scavenged at transfer stations from the waste reaching at such points. The recyclable ratio that remains in the house varies and cannot be recovered by the authorities unless it is bought directly from the households. Only the part of recyclables reaching a certain bin or secondary transfer station can be exploited.

In some areas of city where waste is transported by private companies from transfer points to the disposal site out study found that scavengers could only get about 35% of the recyclables from the waste at transfer station. Considering the above fact, it can be inferred that in case municipality introduces efficient waste transfer system in the city, the amount of recyclables reaching the disposal facility may increase by 30% of the current amount. In case house-to-house collection is introduced the municipality will be able to take hold of 90% of the recyclables in the waste stream being generated from a household.

Waste Management Outlook for India

Waste management crisis in India should be approached holistically; while planning for long term solutions, focus on addressing the immediate problems should be maintained. National and local governments should work with their partners to promote source separation, achieve higher percentages of recycling and produce high quality compost from organics. While this is being achieved and recycling is increased, provisions should be made to handle the non-recyclable wastes that are being generated and will continue to be generated in the future.

Recycling, composting and waste-to-energy are all integral parts of the waste disposal solution and they are complementary to each other; none of them can solve India’s waste crisis alone. Any technology should be considered as a means to address public priorities, but not as an end goal in itself. Finally, discussion on waste management should consider what technology can be used, to what extent in solving the bigger problem and within what timeframe.

Experts believe India will have more than nine waste-to-energy projects in different cities across India in the next three years, which will help alleviate the situation to a great extent. However, since waste-to-energy projects are designed to replace landfills, they also tend to displace informal settlements on the landfills. Here, governments should welcome discussions with local communities and harbor the informal recycling community by integrating it into the overall waste management system to make sure they do not lose their rights for the rest of the city’s residents.

This is important from a utilitarian perspective too, because in case of emergency situations like those in Bengaluru, Kerala, and elsewhere, the informal recycling community might be the only existing tool to mitigate damage due to improper waste management as opposed to infrastructure projects which take more than one year for completion and public awareness programs which take decades to show significant results.

Involvement of informal recycling community is vital for the success of any SWM program in India

Indian policy makers and municipal officials should utilize this opportunity, created by improper waste management examples across India, to make adjustments to the existing MSW Rules 2000, and design a concrete national policy based on public needs and backed by science. If this chance passes without a strong national framework to improve waste management, the conditions in today’s New Delhi, Bengaluru, Thiruvananthapuram, Kolkata, Mumbai, Chennai, Coimbatore and Srinagar will arise in many more cities as various forcing factors converge. This is what will lead to a solid waste management crisis affecting large populations of urban Indians.

The Indian Judiciary proved to be the most effective platform for the public to influence government action. The majority of local and national government activity towards improving municipal solid waste management is the result of direct public action, funneled through High Courts in each state, and the Supreme Court. In a recent case (Nov 2012), a slew of PILs led the High Court of Karnataka to threaten to supersede its state capital Bengaluru’s elected municipal council, and its dissolution, if it hinders efforts to improve waste management in the city.

In another case in the state of Haryana, two senior officials in its urban development board faced prosecution in its High Court for dumping waste illegally near suburbs. India’s strong and independent judiciary is expected to play an increasing role in waste management in the future, but it cannot bring about the required change without the aid of a comprehensive national policy.

Note: Acknowledgements will be published in the full report “Observations from India’s Crisis” on wtert.org and blog.wtert.org

The Technology Revolutionizing Commercial Waste Management

Every single one of us can do something to improve our impact on the planet, but it is a given that businesses of all sizes have a bigger footprint than families – commercial accounts for 12% of total greenhouse gas emissions. A big factor of that is waste management. From the physical process of picking up garbage, to the methane-released process of decomposition, there are numerous factors that add up to create a large carbon footprint.

Between hiring green focused waste management solutions and recycling in a diligent fashion, there are a few technologies that are helping to break down the barrier between commercial waste management and an environmentally positive working environment.

Cleaning up commercial kitchens

A key form of commercial waste is food waste. Between the home and restaurant, it is estimated by the US Department of Agriculture that 133 billion pounds of food is wasted every year. Much will end up in the landfill. How is technology helping to tackle this huge source of environmental waste? Restaurants themselves are benefiting from lower priced and higher quality commercial kitchen cooking equipment, that helps to raise standards and reduce wastage.

Culinary appliances for varied cuisines also benefit from a new process being developed at the Netherland’s Wageningen University. A major driver of food waste is rejected wholesale delivery, much of which will be disposed of in landfill. The technology being developed in Holland aims to reduce wastage by analyzing food at the source, closer to where recycling will be achievable.

Route optimization

Have you ever received a parcel from an online retailer only to find the box greatly outsizes the contents? On the face of it, this is damaging to the environment. However, many retailers use complex box sorting algorithms. The result is that the best route is chosen on balance, considering the gas needed to make the journey, the amount of stock that can be delivered and the shortest route for the driver. This is an area of intense technological innovation.

The National Waste & Recycling Association reported in 2017 on how 2018 would see further advances, particularly with the integration of artificial intelligence and augmented reality into the route-finding process.

Balancing the landfill carbon footprint

It is well established that landfills are now being used to power wind turbines, geothermal style electricity and so on. They are being improved to minimize the leachate into groundwater systems and to prevent methane escaping into the atmosphere. However, further investigation is being pushed into the possibility of using landfill as a carbon sequester.

AI-based waste management systems can help in route optimization and waste disposal

Penn State University, Lawrence Berkeley and Texas University recently joined together to secure a $2.5m grant into looking into the function of carbon, post-sequestration. This will help to shed light on the carbon footprint and create a solid foundation on which future technology can thrive.

Businesses of all sizes have an impact on the carbon footprint of the world. The various processes that go into making a business profitable and have a positive impact on their local and wider communities need to be addressed. As with many walks of life, technology is helping to bridge the gap.

SWM in India – Role of Policies and Planning

Out of all the measures that are necessary in addressing India’s impending waste management crisis, the most efficient will be changes at the national policy and planning level. It is well known among the small but growing waste management sector that urban India will hit rock bottom due to improper waste management.

Unfortunately, they think such a crisis is required to bring about policy changes, as they generally tend to happen only after the damage has been done. This attitude is unfortunate because it indicates a lack of or failed effort from the sector to change policy, and also the level of India’s planning and preparedness.

Important Statistics

An average of 32,000 people will be added to urban India every day, continuously, until 2021. This number is a warning, considering how India’s waste management infrastructure went berserk trying to deal with just 25,000 new urban Indians during the last decade. The scale of urbanization in India and around the world is unprecedented with planetary consequences to Earth’s limited material and energy resources, and its natural balance.

Rate of increase in access to sanitation infrastructure generally lags behind the rate of urbanization by 33% around the world; however, the lack of planning and impromptu piecemeal responses to waste management issues observed in India might indicate a much wider gap. This means urban Indians will have to wait longer than an average urban citizen of our world for access to proper waste management infrastructure.

The clear trend in the outbreak of epidemic and public protests around India is that they are happening in the biggest cities in their respective regions. Kolkata, Bengaluru, Thiruvananthapuram, and Srinagar are capitals of their respective states, and Coimbatore is the second largest city in Tamil Nadu. However, long term national level plans to improve waste management in India do not exist and guidance offered to urban local bodies is meager.

Apart from the Jawaharlal Nehru National Urban Renewal Mission (JnNURM), there has been no national level effort required to address the problem. Even though JnNURM was phenomenal in stimulating the industry and local governments, it was not enough to address the scale and extent of the problem. This is because of JnNURM is not a long term financing program, sorts of which are required to tackle issues like solid waste management.

Role of Municipal Corporations

In the short term, municipal corporations have their hands tied and will not be able to deliver solutions immediately. They face the task of realizing waste management facilities inside or near cities while none of their citizens want them near their residences. Officials of Hyderabad’s municipal corporation have been conducting interviews with locals for about eight years now for a new landfill site, to no avail.

In spite of the mounting pressure, most corporations will not be able to close the dumpsites that they are currently using. This might not be the good news for which local residents could be waiting, but, it is important that bureaucrats, municipal officials and politicians be clear about it. Residents near Vellalore dump protested and blocked roads leading to the site because Coimbatore municipal officials repeatedly failed to fulfill their promises after every landfill fire incident.

Due to lack of existing alternatives, other than diverting waste fractionally by increasing informal recycling sector’s role, closing existing landfills would mean finding new sites. Finding new landfills in and around cities is nearly impossible because of the track record of dumpsite operations and maintenance in India and the Not in My Backyard (NIMBY) phenomenon.

However, the corporations can and should take measures to reduce landfill fires and open burning, and control pollution due to leachate and odor and vector nuisance. This will provide much needed relief to adjacent communities and give the corporations time to plan better. While navigating through an issue as sensitive this, it is of the utmost importance that they work closely with the community by increasing clarity and transparency.

Municipal officials at the meeting repeatedly stressed the issue of scarcity of land for waste disposal, which led to overflowing dumpsites and waste treatment facilities receiving more waste than what they were designed for. Most municipal officials are of the sense that a magic solution is right around the corner which will turn all of their city’s waste into fuel oil or gas, or into recycled products.

While such conversion is technologically possible with infinite energy and financial sources, that is not the reality. Despite their inability to properly manage wastes, the majority of municipal officials consider waste as “wealth” when approached by private partners. Therefore, a significant portion of officials expect royalty from private investments without sharing business risk.

Good News on the Horizon

While the situation across India is grim and official action has to be demanded through courts or public protests, there are a handful of local governments which are planning ahead and leading the way. The steps taken to solve New Delhi’s waste management problem is laudable. If it was not for the kind of leadership and determination showcased in Delhi, India would not have had its only operating WTE plant. This plant was built in 2011, at a time when the need for waste-to-energy plants was being felt all over India. 1300 tons of Delhi’s waste goes into this facility every day to generate electricity. The successful operation of this facility reinvigorated dormant projects across the nation.

After living with heaps of garbage for months, Thiruvananthapuram Municipal Corporation started penalizing institutions which dump their waste openly. It has also increased the subsidy on the cost of small scale biogas units to 75% and aerobic composting units to 90% to encourage decentralized waste management. The corporation is optimistic with the increase in number of applications for the subsidy from 10 in an entire year to 18 in just a few months after the announcement.

In Bengaluru, improper waste management led to the change of the city’s municipal commissioner. The new commissioner was handed over the job to particularly improve waste management in the city. As a response to the dengue outbreak in Kolkata, the state’s Chief Minister went door to door to create awareness about waste management, and also included the topic in her public speeches. For good or bad, many cities in India have started or initiated steps for banning plastics without performing life cycle analyses.

Note: Acknowledgements will be published in the full report “Observations from India’s Crisis” on wtert.org and blog.wtert.org

Waste Management in Global North and Global South

Waste management is highly context specific. Therefore it is important to distinguish between the conditions in the Global North and the Global South. Recent ILO figures suggest that 24 million people around the world are involved in the informal waste recycling sector, 80% of whom are waste pickers. Some estimates say that 1% of urban population in developing countries makes their primary household income through informal sector waste management activities.  In Latin America alone, 4-5 million waste pickers earn their livelihood by being a part of the global recyclables supply chain.

Municipal budgets in the Global South are often limited and only a small percentage of that budget is assigned to waste management as compared to other municipal services. In the Global North waste management is recognized as a necessary public good and there is a greater willingness to pay for this service. Solid waste management (e.g. waste collection, transportation and recycling) is generally more labour intensive than in North America and Europe.

Urbanization in the Global South is often haphazard and unplanned; creating pockets of high and low income neighbourhoods. This creates logistical issues for the waste management service provision limiting options for viable waste collection and transportation. It is often the informal sector that steps in to fill this service gap.

The maturity and strength of the legal framework differs between the Global South and Global North. In North America and Europe the legal framework of waste management actively promotes and provides incentives for waste reduction, reuse and recovery whereas, despite recent developments in some countries, in Latin America legal frameworks remain focused upon mixed waste collection, transportation and disposal.

Recycling rates in Argentina are at 11% of the total waste stream with 95% of this material is recovered by the informal sector. This situation is replicated in many other countries. The informal sector recovers between 50% (e.g. Mexico) and 90% (e.g. Nicaragua) of the waste recovered and in the different countries of the region. Resource recovery and recycling is driven by market conditions. Materials that have a value are diverted from landfill through an informal network of recyclers and waste collectors.

The composition of waste is also very different in the Global South where organic waste is a much larger percentage of the waste stream. Because of the high percentage of organics in the waste stream in many cities in the Global South, innovations in decentralised composting and small scale biogas have been seen across the Global South (particularly in India) and can be used effectively by the informal sector, making a zero waste future a real possibility.

Role of Informal Recycling Sector

The informal sector can be highly effective at collecting and diverting garbage from landfill. When empowered with a facilitating legal framework, and collectively organized, the informal sector can be a key part of a sustainable resource recovery system. Using people power to increase recycling and diversion rates decreases the need for expensive, fixed, high technology solutions.

Understanding that the context for waste management is different between the Global North and Global South, and even in different areas within a city or region, means that no two situations will be the same. However, if there is one principle to follow it may well be to consider the context and look for the simplest solution. The greenest cities of the future may well be those that use flexible, adaptable solutions and maximize the work that the informal sector is already doing.

Note: This excerpt is being published with the permission of our collaborative partner Be Waste Wise. The original excerpt and its video recording can be found at this link

Why Going Green is the Best Thing You Can Do for Your Community

college-greenAs we go about our daily lives, it’s always a good idea to think about how we can contribute to the community we belong to in tangible and appreciable ways. Improving our communities from the inside not only allows us to make things easier and more convenient for ourselves, but also for the people we meet and rely upon in our day-to-day. Besides this, it also helps us think of other people’s needs rather than just our own—an essential need if we’re to live happy and productive lives. One of the best ways of improving our communities is, of course, going green: the act of adopting an environmentally-friendly lifestyle. This means taking active steps to minimize our carbon footprint and reducing waste.

It doesn’t have to start out big—we can start with the smaller things, and work our way up from there. Instead of buying new printer ink cartridges, for example, we can try using compatible ink cartridges instead. These are ink cartridges that are made the same way as new printer ink cartridges, but cost way less to make than branded ones. Instead of throwing away our old or obsolete electronics and electrical goods, we can look into getting them repaired. Another example of that is to refurbish old drones instead of buying new.

By taking up these eco-friendly practices, our communities will become cleaner, more energy-efficient, and much healthier places to live in, alongside other very practical and tangible benefits that everyone will appreciate.

Not convinced? Well, hopefully listing out those benefits in full below will convince you. Read on as we go through all the biggest reasons why going green is the best thing you can do for your community.

A healthier community

Enacting green and eco-friendly practices in your community will have the immediate effect of making it healthier for the individuals who live in it, enabling them to live longer, happier, and more productive lives. This can be considered as the most important benefit, seeing as we can tie so many health conditions and diseases to having an environmentally-negligent lifestyle. By going green, you can avoid these potential risks from taking hold in your community.

For example, recycling and minimizing trash or garbage helps makes your immediate surroundings cleaner and more attractive to look at. This causes disease-carrying pests such as insects and rodents to be driven away from your community, which then results in less people catching those diseases.

Another example is having the vehicles in your community switch to more eco-friendly fuel types will result in cleaner and healthier air, as well as reduce the chances of children and the elderly from getting respiratory diseases. These and a whole lot more are attainable by going green.

Savings on utility bills and other expenses

One of the main tenets of going green is to be conservative when it comes to the usage of utilities, such as electricity, gas, water, and so on. It goes without saying that using too much of these obviously strains the environment.

For example, the excessive and unnecessary use of electricity when it’s clearly not needed increases the power demand from power plants, which in turn increases the amount of fuel being used to supply that energy. This uses up our remaining fossil fuels at an alarming rate, while also depositing more pollutants into the atmosphere and environment. The same goes for gas and other utilities.

By being smarter and more conscious about using these precious resources in our homes, we can reduce the impact we have on the environment by quite a large degree. It will help ease the strain our environment is currently experiencing in providing us these resources and ensure that they don’t run out as quickly as they would have if we continued being unnecessarily wasteful with our usage.

Besides this, conserving energy and resources also helps us save on our utility bills. Obviously, the less power, water, and gas we use in our day-to-day, the less we’ll be charged when our monthly bills come in. Up to 20% of expanses per household, according to the US Environmental Protection Agency, are saved, especially if we adopt changes such as using solar panels rather than relying on our electrical grid. This is a huge chunk of money no matter how you slice it!

Durable and stronger homes and and structures

Let’s not mince words about it: eco-friendly and environmentally-conscious “green” products are more expensive than the brands that have an easier time fitting into our budget. However, we must consider that the former is also much more durable than the latter, which will inevitably result in a lot of savings in the long run.

This can be seen the most in construction building materials, especially those involved in the building and repair of homes. For example, recycled decking, which is made from recycled plastic and wooden fibers, have been tested to last five times longer than traditional decking.

Bamboo, a self-sustaining perennial grass that can grow up to three feet in 24 hours, is lighter than most building materials and yet has greater compressive strength than brick and concrete. The best part about it is that it grows faster than it can be harvested, meaning that there’s no danger of running out of it anytime soon, no matter how extensively it’s used.

By creating your community’s homes and structures using these eco-friendly materials, you can help save the environment while also ensuring that the homes and shelters will last for as long as they’re needed.

A self-sufficient community

It’s a fact of life that we have to rely on big companies to get us the modern conveniences and essentials we need to get through the day. However, by going green, we can help reduce our reliance on them and become more independent in our lives.

For example, taking the initiative to install solar panels in every home in your community will allow it to become less dependent on the power that companies provide you with electricity. With enough time, your community will be generating enough excess power that the same company will be paying you for that excess. There’s also the fact that if something goes wrong with the power plant, your community won’t be subjected to the same annoying and disruptive blackout that other surrounding neighborhoods will be, as you’ll have enough solar power to last you the entire time.

Let’s say you’re not quite at that level yet, in terms of going green. How about supporting your local markets rather than your nearby supermarket? By doing so, you ensure that the food-growing sector of your community continues to earn a living while also retaining the ability to keep growing natural and organic produce. Doing so also cuts down on harmful emissions, as you won’t have to travel by car just to get the fresh food you need. Your community retains its independence while helping the environment.

Conclusion

There are many ways to improve one’s community from the inside, with one of the major and more effective ones being able to adopt eco-friendly and environmentally-conscious practices. By doing so, not only does the community benefit hugely in the end in terms of health, sustainability, and independence from big companies, but the environment as well.

Recycling Outlook for Latin America

Latin America has one of the highest rates of urbanization in the world (80% urban population). By 2050, 90% of Latin America’s population will live in urban areas. This high rate of urbanization coupled with the global economic crisis has resulted in a waste management crisis. Municipalities find themselves unable to keep up with providing services and infrastructure to the urban populations.

Some cities in Latin America are facing this challenge by integrating the informal sector recyclers who are already active in their cities into the municipal solid waste management systems. In many cities, these “recicladores”, “cartoneros” or “catadores” (a few of the many names used for these workers in the region) are responsible for up to 90% of the recyclable waste recovered from the waste stream. Their work reduces municipal waste transportation costs, increases landfill lifetimes and supports the recycling chain throughout the region.

State of the Affairs

Every location presents its own challenges–there is no one-size-fits-all solution for integrated solid waste management systems–but relevant lessons can be drawn from both failed attempts and successful examples of informal sector integration in recycling systems in Latin America.

There are often two very different contexts within cities. In low-income neighborhoods waste collection services are often not provided and individuals and families accumulate and then sell their recyclables for additional income. In contrast, residents in high income neighborhoods do receive a waste collection service and their motivation for recycling is often related to greater levels of environmental awareness. It is important to consider these differences when designing waste management solutions.

Imported systems, and even locally derived systems based on examples from the Global North, generally focus on only one waste management scenario, making it difficult to manage the multiple competing scenarios in many cities in Latin America. There is often a bias towards the automation of waste management services, with the application of the high technology solutions used in the Global North. Regardless of the practicality or scientific evidence against certain high tech solutions, these are often sought after, thought to raise the bar of the city, to make it appear more sophisticated and modern. This leads to a misconception that working with informal sector is a step backwards in terms of urban development and modernization.

Conflicts between private waste management companies, the municipality and informal recyclers are common. The waste management companies do not want pickers on the landfill and wastepickers then go to the municipality for help. However, municipalities usually have very little experience to support the integration of formal and informal waste sectors. There are opportunities for new systems to emerge within this conflict. For example, during a similar conflict in Mexicali, Mundo Sustentable, with the help of Danone, intervened to help a private company work with the informal waste sector and improve recycling rates.

The Way Forward

In Latin America, there is a great opportunity to increase recycling rates by using labour-intensive solutions, which create jobs and support the development of a better urban environment in the cities. Municipal governments should be an integral part of these processes as they are usually responsible for solid waste management at local level. The key to catalyzing informal recycling sector integration will be the development and dissemination of successful examples.

Informal recyclers provide important a range of services to municipalities (such as waste collection and recovery in communities that would not otherwise have access to them), as well as cost savings (for example, the extension of landfill life and reduced transport costs), yet are rarely compensated for these benefits. Informal recyclers further form the foundation of an entire recycling supply chain, which ultimately benefits formal businesses, and often aliment entire local economies.

Challenges to Overcome

Municipal governments are often hesitant to work with informal actors, who are frequently seen as an unknown quantity. Yet often in the process of working and developing relations with informal recycler groups, their concerns diminish and they may actually exhibit enthusiasm. Likewise, the recyclers may gain in confidence and professionalism in their experience of formalization.

One major challenge facing efforts to integrate the informal sector in developing countries is the desire of some local governments to adopt technological solutions that appear more “modern.” In much of Latin America, however, low-cost, low-tech solutions tend to be more viable and sustainable.

The main difference between Latin America and the countries of the Global North is that solid waste management is a labor intensive system. It is made up of workers and hence has an important social component. The ILO estimated there is 24 million of people working in the global recycling supply chain, but those at the bottom of the pyramid, the wastepickers, make up 80%. They remain the lowest paid even though they make an enormous contribution to their cities.

It is important to understand that highly sophisticated, high technology systems are not required for effective resource recovery. In many cities in Latin America between 80-90% of everything that is recycled is recovered by the informal recycling sector.

Despite the fact that there is little or no public investment in waste management or recycling infrastructure, cities with an active informal sector reach twice the rate of fully formalized municipal solid waste management systems. As an example, the recycling rate is 60% in Cairo, while in Rotterdam (and other cities in the Global North) recycling levels only reach 30%, even with a high public investment in the system (UN Habitat, 2010).

When designing infrastructure and waste management systems we must consider not only the waste management and resource recovery needs but also the social side of the system. In order to be effective, efforts to upgrade waste management services should go hand in hand with efforts to formalise and integrate the informal sector.

Bogota – A Success Story

An example of a recent success story is that after 27 years of struggle, the waste pickers in Bogota, Colombia have managed to change the government’s outlook on their work and their existence. They are now included in the system and are paid per tonne of waste collected, just like any other private sector collection and waste management company would be. They have become recognized as public service providers, acknowledged for their contribution to the environment and public health of the city.

The key challenge is to be much more creative and understand that in order to improve the working conditions of waste pickers and in order to increase recycling rates, we don’t need high technology. We need a systemic approach and this can be very simple sometimes infrastructure as simple as a roof [on a sorting area] can be effective in improving working conditions.

Note: This excerpt is being published with the permission of our collaborative partner Be Waste Wise. The original excerpt and its video recording can be found at this link

Municipal Wastes in Saudi Arabia

Saudi Arabia has been witnessing rapid industrialization, high population growth rate and fast urbanization which have resulted in increased levels of pollution and waste. Solid waste management is becoming a big challenge for the government and local bodies with each passing day. With population of around 29 million, Saudi Arabia generates more than 15 million tons of solid waste per year. The per capita waste generation is estimated at 1.5 to 1.8 kg per person per day.

Solid waste generation in the three largest cities – Riyadh, Jeddah and Dammam – exceeds 6 million tons per annum which gives an indication of the magnitude of the problem faced by civic bodies.  More than 75 percent of the population is concentrated in urban areas which make it necessary for the government to initiate measures to improve recycling and waste management scenario in the country.

In Saudi Arabia, municipal solid waste is collected from individual or community bins and disposed of in landfills or dumpsites. Saudi waste management system is characterized by lack of waste disposal and tipping fees. Recycling, reuse and energy recovery is still at an early stage, although they are getting increased attention. Waste sorting and recycling are driven by an active informal sector. Recycling rate ranges from 10-15%, mainly due to the presence of the informal sector which extracts paper, metals and plastics from municipal waste.

Recycling activities are mostly manual and labor intensive. Composting is also gaining increased interest in Saudi Arabia due to the high organic content of MSW (around 40%).  Efforts are also underway to deploy waste-to-energy technologies in the Kingdom. All activities related to waste management are coordinated and financed by the government.

The Saudi government is aware of the critical demand for waste management solutions, and is investing heavily in solving this problem. The 2011 national budget allocated SR 29 billion for the municipal services sector, which includes water drainage and waste disposal. The Saudi government is making concerted efforts to improve recycling and waste disposal activities.

Waste Management Scenario in Oman

Waste management is a challenging issue for the Sultanate of Oman due to high waste generation rates and scarcity of disposal sites. With population of almost 3 million inhabitants, the country produced about 1.6 million tons of solid waste in 2010. The per capita waste generation is more than 1.5 kg per day, among the highest worldwide.

Solid waste in Oman is characterized by very high percentage of recyclables, primarily paper (26%), plastics (12%), metals (11%) and glass (5%). However the country is yet to realize the recycling potential of its municipal waste stream. Most of the solid waste is sent to authorized and unauthorized dumpsites for disposal which is creating environment and health issues. There are several dumpsites which are located in the midst of residential areas or close to catchment areas of private and public drinking water bodies.

Solid waste management scenario in marked by lack of collection and disposal facilities. Solid waste, industrial waste, e-wastes etc are deposited in very large number of landfills scattered across the country. Oman has around 350 landfills/dumpsites which are managed by municipalities. In addition, there are numerous unauthorized dumpsites in Oman where all sorts of wastes are recklessly dumped.

Al Amerat landfill is the first engineered sanitary landfill in Oman which began its operations in early 2011. The landfill site, spread over an area of 9.6 hectares, consists of 5 cells with a total capacity of 10 million m3 of solid waste and spread over an area of over 9.6 hectares. Each cell has 16 shafts to take care of leachate (contaminated wastewater). All the shafts are interconnected, and will help in moving leachate to the leachate pump. The project is part of the government’s initiatives to tackle solid waste in a scientific and environment-friendly manner. Being the first of its kind, Al Amerat sanitary landfill is expected to be an example for the future solid waste management projects in the country.

Solid waste management is among the top priorities of Oman government which has chalked out a robust strategy to resolve waste management problem in the Sultanate. The country is striving to establish engineered landfills, waste transfer stations, recycling projects and waste-to-energy facilities in different parts of the country.  Modern solid waste management facilities are under planning in several wilayat, especially Muscat and Salalah. The new landfills will eventually pave the way for closure of authorized and unauthorized garbage dumps around the country. However investments totaling Omani Rial 2.5 billion are required to put this waste management strategy into place.

The state-owned Oman Environment Services Holding Company (OESHCO), which is responsible for waste management projects in Oman, has recently started the tendering process for eight important projects. OESHCO has invited tenders from specialised companies for an engineered landfill and material recovery facility in Barka, apart from advisory services for 29 transfer stations and a couple of tenders for waste management services in the upcoming Special Economic Zone (SEZ) in Duqm, among others. Among the top priorities is that development of Barka engineered landfill as the existing Barka waste disposal site, which serve entire wilayat and other neighbouring wilayats in south Batinah governorate, is plagued by environmental and public health issues.