Energy Potential of Bagasse

Sugarcane is one of the most promising agricultural sources of biomass energy in the world. Sugarcane produces mainly two types of biomass – sugarcane trash and bagasse. Sugarcane trash is the field residue remaining after harvesting the sugarcane stalk while bagasse is the fibrous residue left over after milling of the sugarcane, with 45-50% moisture content and consisting of a mixture of hard fibre, with soft and smooth parenchymatous (pith) tissue with high hygroscopic property.

Bagasse contains mainly cellulose, hemicellulose, pentosans, lignin, sugars, wax, and minerals. The quantity obtained varies from 22 to 36% on sugarcane and is mainly due to the fibre portion in the sugarcane and the cleanliness of sugarcane supplied, which, in turn, depends on harvesting practices.

The composition of bagasse depends on the variety and maturity of sugarcane as well as harvesting methods applied and efficiency of the sugar processing. Bagasse is usually combusted in furnaces to produce steam for power generation. Bagasse is also emerging as an attractive feedstock for bioethanol production.

It is also utilized as the raw material for production of paper and as feedstock for cattle. The value of Bagasse as a fuel depends largely on its calorific value, which in turn is affected by its composition, especially with respect to its water content and to the calorific value of the sugarcane crop, which depends mainly on its sucrose content.

Moisture contents is the main determinant of calorific value i.e. the lower the moisture content, the higher the calorific value. A good milling process will result in low moisture of 45% whereas 52% moisture would indicate poor milling efficiency. Most mills produce Bagasse of 48% moisture content, and most boilers are designed to burn Bagasse at around 50% moisture.

Bagasse also contains approximately equal proportion of fibre (cellulose), the components of which are carbon, hydrogen and oxygen, some sucrose (1-2 %), and ash originating from extraneous matter. Extraneous matter content is higher with mechanical harvesting and subsequently results in lower calorific value.

For every 100 tons of Sugarcane crushed, a Sugar factory produces nearly 30 tons of wet Bagasse. Bagasse is often used as a primary fuel source for Sugar mills; when burned in quantity, it produces sufficient heat and electrical energy to supply all the needs of a typical Sugar mill, with energy to spare. The resulting CO2 emissions are equal to the amount of CO2 that the Sugarcane plant absorbed from the atmosphere during its growing phase, which makes the process of cogeneration greenhouse gas-neutral.

35MW Bagasse and Coal CHP Plant in Mauritius

Cogeneration of bagasse is one of the most attractive and successful biomass energy projects that have already been demonstrated in many sugarcane producing countries such as Mauritius, Reunion Island, India and Brazil. Combined heat and power from sugarcane in the form of power generation offers renewable energy options that promote sustainable development, take advantage of domestic resources, increase profitability and competitiveness in the industry, and cost-effectively address climate mitigation and other environmental goals.

Biomass Energy Potential in Philippines

The Philippines has abundant supplies of biomass energy resources in the form of agricultural crop residues, forest residues, animal wastes, agro-industrial wastes, municipal solid wastes and aquatic biomass. The most common agricultural wastes are rice hull, bagasse, cane trash, coconut shell/husk and coconut coir. The use of crop residues as biofuels is increasing in the Philippines as fossil fuel prices continue to rise. Rice hull is perhaps the most important, underdeveloped biomass resource that could be fully utilized in a sustainable manner.

At present, biomass technologies utilized in the country vary from the use of bagasse as boiler fuel for cogeneration, rice/coconut husks dryers for crop drying, biomass gasifiers for mechanical and electrical applications, fuelwood and agricultural wastes for oven, kiln, furnace and cook-stoves for cooking and heating purposes. Biomass technologies represent the largest installations in the Philippines in comparison with the other renewable energy, energy efficiency and greenhouse gas abatement technologies.

Biomass energy plays a vital role in the nation’s energy supply. Nearly 30 percent of the energy for the 80 million people living in the Philippines comes from biomass, mainly used for household cooking by the rural poor. Biomass energy application accounts for around 15 percent of the primary energy use in the Philippines. The resources available in the Philippines can generate biomass projects with a potential capacity of more than 200 MW.

Almost 73 percent of this biomass use is traced to the cooking needs of the residential sector while industrial and commercial applications accounts for the rest. 92 percent of the biomass industrial use is traced to boiler fuel applications for power and steam generation followed by commercial applications like drying, ceramic processing and metal production. Commercial baking and cooking applications account for 1.3 percent of its use.

The EC-ASEAN COGEN Programme estimated that the volume of residues from rice, coconut, palm oil, sugar and wood industries is 16 million tons per year. Bagasse, coconut husks and shell can account for at least 12 percent of total national energy supply. The World Bank-Energy Sector Management Assistance Program estimated that residues from sugar, rice and coconut could produce 90 MW, 40 MW, and 20 MW, respectively.

The development of crop trash recovery systems, improvement of agro-forestry systems, introduction of latest energy conversion technologies and development of biomass supply chain can play a major role in biomass energy development in the Philippines. The Philippines is among the most vulnerable nations to climatic instability and experiences some of the largest crop losses due to unexpected climatic events. The country has strong self-interest in the advancement of clean energy technologies, and has the potential to become a role model for other developing nations on account of its broad portfolio of biomass energy resources and its potential to assist in rural development.

Cogeneration of Bagasse

Cogeneration of bagasse is one of the most attractive and successful biomass energy projects that have already been demonstrated in many sugarcane producing countries such as Mauritius, Reunion Island, India and Brazil. Combined heat and power from sugarcane in the form of power generation offers renewable energy options that promote sustainable development, take advantage of domestic resources, increase profitability and competitiveness in the industry, and cost-effectively address climate mitigation and other environmental goals.

bagasse_cogeneration

According to World Alliance for Decentralized Energy (WADE) report on Bagasse Cogeneration, bagasse-based cogeneration could deliver up to 25% of current power demand requirements in the world’s main cane producing countries. The overall potential share in the world’s major developing country producers exceeds 7%.

There is abundant opportunity for the wider use of bagasse-based cogeneration in sugarcane-producing countries. It is especially great in the world’s main cane producing countries like Brazil, India, Thailand, Pakistan, Mexico, Cuba, Colombia, Philippines and Vietnam. Yet this potential remains by and large unexploited.

Using bagasse to generate power represents an opportunity to generate significant revenue through the sale of electricity and carbon credits. Additionally, cogeneration of heat and power allows sugar producers to meet their internal energy requirements and drastically reduce their operational costs, in many cases by as much as 25%. Burning bagasse also removes a waste product through its use as a feedstock for the electrical generators and steam turbines.

Most sugarcane mills around the globe have achieved energy self-sufficiency for the manufacture of raw sugar and can also generate a small amount of exportable electricity. However, using traditional equipment such as low-pressure boilers and counter-pressure turbo alternators, the level and reliability of electricity production is not sufficient to change the energy balance and attract interest for export to the electric power grid.

bagasse-cogen

On the other hand, revamping the boiler house of sugar mills with high pressure boilers and condensing extraction steam turbine can substantially increase the level of exportable electricity. This experience has been witnessed in Mauritius, where, following major changes in the processing configurations, the exportable electricity from its sugar factory increased from around 30-40 kWh to around 100–140 kWh per ton cane crushed.

In Brazil, the world’s largest cane producer, most of the sugar mills are upgrading their boiler configurations to 42 bars or even higher pressure of up to 67 bars.

Technology Options

The prime technology for sugar mill cogeneration is the conventional steam-Rankine cycle design for conversion of fuel into electricity. A combination of stored and fresh bagasse is usually fed to a specially designed furnace to generate steam in a boiler at typical pressures and temperatures of usually more than 40 bars and 440°C respectively.

The high pressure steam is then expanded either in a back pressure or single extraction back pressure or single extraction condensing or double extraction cum condensing type turbo generator operating at similar inlet steam conditions.

35MW-bagasse-coal-chp-plant-mauritius

35MW Bagasse and Coal CHP Plant in Mauritius

 

Due to high pressure and temperature, as well as extraction and condensing modes of the turbine, higher quantum of power gets generated in the turbine–generator set, over and above the power required for sugar process, other by-products, and cogeneration plant auxiliaries. The excess power generated in the turbine generator set is then stepped up to extra high voltage of 66/110/220 kV, depending on the nearby substation configuration and fed into the nearby utility grid.

As the sugar industry operates seasonally, the boilers are normally designed for multi-fuel operations, so as to utilize mill bagasse, sugarcane trash, crop residues, coal and other fossil fuel, so as to ensure year round operation of the power plant for export to the grid.

Latest Trends

Modern power plants use higher pressures, up to 87 bars or more. The higher pressure normally generates more power with the same quantity of Bagasse or biomass fuel. Thus, a higher pressure and temperature configuration is a key in increasing exportable surplus electricity.

In general, 67 bars pressure and 495°C temperature configurations for sugar mill cogeneration plants are well-established in many sugar mills in India. Extra high pressure at 87 bars and 510°C, configuration comparable to those in Mauritius, is the current trend and there are about several projects commissioned and operating in India and Brazil. The average increase of power export from 40 bars to 60 bars to 80 bars stages is usually in the range of 7-10%.

A promising alternative to steam turbines are gas turbines fuelled by gas produced by thermochemical conversion of biomass. The exhaust is used to raise steam in heat recovery systems used in any of the following ways: heating process needs in a cogeneration system, for injecting back into gas turbine to raise power output and efficiency in a steam-injected gas turbine cycle (STIG) or expanding through a steam turbine to boost power output and efficiency in a gas turbine/steam turbine combined cycle (GTCC).

Gas turbines, unlike steam turbines, are characterized by lower unit capital costs at modest scale, and the most efficient cycles are considerably more efficient than comparably sized steam turbines.

Sugarcane Trash – A Renewable Fuel of Today and Future

In Indian sugar mills, the frequent cycles of ups and downs in the core business of selling sugar has led to the concentration towards the trend of ancillary businesses, like cogeneration power plant and ethanol production, becoming the profit centres. These units, which were introduced as a means to manage sugar mills’ own byproduct, like bagasse, are now keeping several sugar mills financially afloat. Thus, the concept of ‘Integrated Sugar Mill Complex’ has now become a new normal.

Limitations of Bagasse

Bagasse is a ubiquitous primary fuel in cogeneration plants in sugar mills, which adds more than 2,000 MW of renewable power to the Indian energy mix. The inclination of cogeneration plant managers towards bagasse is primarily because of its virtue of being easily available on-site, and no requirement to purchase it from the external market.

This remains true despite its several significant shortcomings as a boiler fuel, prime among which are very high moisture content and low calorific value. As a result, the fuel-to-energy ratio remains abysmally low and the consequent lesser power generation is depriving these sugar mills from achieving true revenue potential from their ancillary power business vertical, which is pegged at ~10,000 MW.

Sugarcane Trash – A Wonder Waste

Though, there is a much neglected high calorific value biomass which is available in proximity of every sugar mill and is also a residue of the sugarcane crop itself, which could enable the cogeneration units to achieve their maximum output potential. This wonder waste is sugarcane trash – the dry leaves of sugarcane crop – which is left in the farms itself after sugarcane harvesting as it has no utility as fodder and generally burnt by farmers, which harms the surrounding air quality substantially.

Given its favourable properties of having very low moisture content with moderate-to-high calorific value, sugarcane trash could be used in most of the high pressure boiler designs in a considerable proportion along with bagasse.

cane-trash

Undeniably, sugar mills should not discontinue using bagasse as the primary fuel, but surely complement it with sugarcane trash as it would lead to an increase in their revenue generation and would also allow them to expand operations of their cogeneration plant to off-season, as using sugarcane trash with bagasse in season would leave more bagasse for off-season usage.

Hurdles to Overcome

Despite these evident benefits, the major obstacle in development of sugarcane trash as an industrial boiler fuel has been its difficult collection from thousands of small and fragmented farms. Moreover, the trash becomes available and needs to be collected simultaneously during the operating season of the sugar mills, which makes deployment of resources, human or otherwise, for managing the procurement of trash very difficult for any sugar mill.

As a matter of fact, the sugar mills which initiated the pilots, or even scaled commercially, to utilise sugarcane trash along with bagasse, had to sooner or later discontinue its use, owing to the mammoth challenges discussed above.

The Way Forward

Thus, in order to utilise this wonder waste, there is a dire need to outsource its procurement to professional and organised players which establish the biomass supply chain infrastructure in the vicinity of the cogeneration units to make on-site availability of sugarcane trash as convenient as bagasse and enable them to procure the rich quality biomass at sustainable prices which leads to an increase in their profits.

sugarcane-trash-burning

Burning of cane trash creates pollution in sugar-producing countries

These biomass supply chain companies offer value to the farmers by processing their crop residues in timely manner, thus prevent open burning of the crop residue and contribute to a greener and cleaner environment.

Indeed, owing to its favourable fuel properties, positive environmental impact and now, with ease in its procurement, sugarcane trash is the renewable fuel of today and future for the Indian sugar mills.

Salient Features of Sugar Industry in Mauritius

Sugar industry has always occupied a prominent position in the Mauritian economy since the introduction of sugarcane around three centuries ago. Mauritius has been a world pioneer in establishing sales of bagasse-based energy to the public grid, and is currently viewed as a model for other sugarcane producing countries, especially the developing ones.

Sugarcane_Biomass

 

Sugar factories in Mauritius produce about 600,000 tons of sugar from around 5.8 million tons of sugarcane which is cultivated on an agricultural area of about 72,000 hectares. Of the total sugarcane production, around 35 percent is contributed by nearly 30,000 small growers. There are more than 11 sugar factories presently operating in Mauritius having crushing capacities ranging from 75 to 310 tons cane per hour.

During the sugar extraction process, about 1.8 million tons of Bagasse is produced as a by-product, or about one third of the sugarcane weight. Traditionally, 50 percent of the dry matter is harvested as cane stalk to recover the sugar with the fibrous fraction, i.e. Bagasse being burned to power the process in cogeneration plant. Most factories in Mauritius have been upgraded and now export electricity to the grid during crop season, with some using coal to extend production during the intercrop season.

Surplus electricity is generated in almost all the sugar mills. The total installed capacity within the sugar industry is 243 MW out of which 140 MW is from firm power producers. Around 1.6 – 1.8 million tons of bagasse (wet basis) is generated on an annually renewable basis and an average of around 60 kWh per ton sugarcane is generated for the grid throughout the island.

The surplus exportable electricity in Mauritian power plants has been based on a fibre content ranging from 13- 16% of sugarcane, 48% moisture content in Bagasse, process steam consumption of 350–450 kg steam per ton sugarcane and a power consumption of 27-32 kWh per ton sugarcane.

Sugarcane-mechanical-harvest

 

In Mauritius, the sugarcane industry is gradually increasing its competitiveness in electricity generation. It has revamped its boiler houses by installing high pressure boilers and condensing extraction steam turbine. All the power plants are privately owned, and the programme has been a landmark to show how all the stakeholders (government, corporate and small planters) can co-operate. The approach is being recommended to other sugarcane producing countries worldwide to harness the untapped renewable energy potential of biomass wastes from the sugar industry.

Bagasse-Based Cogeneration in Pakistan: Challenges and Opportunities

Considering the fact that Pakistan is among the world’s top-10 sugarcane producers, the potential of generating electricity from bagasse is huge.  Almost all the sugar mills in Pakistan have in-house plants for cogeneration but they are inefficient in the consumption of bagasse. If instead, high pressure boilers are installed then the production capacity can be significantly improved with more efficient utilization of bagasse.

bagasse-pakistan

However, due to several reasons; mostly due to financing issues, the sugar mill owners were not able to set up these plants. Only recently, after financial incentives have been offered and a tariff rate agreed upon between the government and mill owners, are these projects moving ahead.

The sugar mill owners are more than willing to supply excess electricity generated form the in-house power plants to the national grid but were not able to before, because they couldn’t reach an agreement with the government over tariff. The demand for higher tariff was justified because of large investments in setting up new boilers. It would also have saved precious foreign exchange which is spent on imported oil.

By estimating the CDM potential of cogeneration (or CHP) projects based on biofuels, getting financing for these projects would be easier. Renewable energy projects can be developed through Carbon Development Mechanism or any other carbon credit scheme for additional revenue.

Since bagasse is a clean fuel which emits very little carbon emissions it can be financed through Carbon Development Mechanism. One of the reasons high cogeneration power plants are difficult to implement is because of the high amount of costs associated. The payback period for the power plants is unknown which makes the investors reluctant to invest in the high cogeneration project. CDM financing can help improve the rate of return of the project.

Bagasse power plants generate Carbon Emission Reductions in 2 ways; one by replacing electricity produced from fossil fuels.  Secondly if not used as a fuel, it would be otherwise disposed off in an unsafe manner and the methane emissions present in biomass would pollute the environment far more than CO2 does.

Currently there are around 83 sugar mills in Pakistan producing about 3.5 million metric tons of sugar per annum with total crushing capacity 597900 TCD, which can produce approximately 3000 MW during crop season Although it may seem far-fetched at the moment, if the government starts to give more attention to  sugar industry biomass rather than coal, Pakistan can fulfill its energy needs without negative repercussions or damage to the environment.

However some sugar mills are opting to use coal as a secondary fuel since the crushing period of sugarcane lasts only 4 months in Pakistan. The plants would be using coal as the main fuel during the non-crushing season. The CDM effect is reduced with the use of coal. If a high cogeneration plant is using even 80% bagasse and 20% of coal then the CERs are almost nullified. If more than 20% coal is used then the CDM potential is completely lost because the emissions are increased. However some sugar mills are not moving ahead with coal as a secondary fuel because separate tariff rates have to be obtained for electricity generation if coal is being used in the mix which is not easily obtained.

Pakistan has huge untapped potential for bagasse-based power generation

One of the incentives being offered by the State Bank of Pakistan is that if a project qualifies as a renewable project it is eligible to get loan at 6% instead of 12%. However ones drawback is that, in order to qualify as a renewable project, CDM registration of a project is not taken into account.

Although Pakistan is on the right track by setting up high cogeneration power plants, the use of coal as a secondary fuel remains debatable.  The issue that remains to be addressed is that with such huge amounts of investment on these plants, how to use these plants efficiently during non-crushing period when bagasse is not available. It seems almost counter-productive to use coal on plants which are supposed to be based on biofuels.

Conclusion

With the demand for energy in Pakistan growing, the country is finally exploring alternatives to expand its power production. Pakistan has to rely largely on fossils for their energy needs since electricity generation from biomass energy sources is considered to be an expensive option despite abundance of natural resources. However by focusing on growing its alternate energy options such as bagasse-based cogeneration, the country will not only mitigate climate change but also tap the unharnessed energy potential of sugar industry biomass.

Biomass Resources from Sugar Industry

Sugarcane is one of the most promising agricultural sources of biomass energy in the world. It is the most appropriate agricultural energy crop in most sugarcane producing countries due to its resistance to cyclonic winds, drought, pests and diseases, and its geographically widespread cultivation. Due to its high energy-to-volume ratio, it is considered one of nature’s most effective storage devices for solar energy and the most economically significant energy crop.

The climatic and physiological factors that limit its cultivation to tropical and sub-tropical regions have resulted in its concentration in developing countries, and this, in turn, gives these countries a particular role in the world’s transition to sustainable use of natural resources.

Sugarcane_Biomass

According to the International Sugar Organization (ISO), Sugarcane is a highly efficient converter of solar energy, and has the highest energy-to-volume ratio among energy crops. Indeed, it gives the highest annual yield of biomass of all species. Roughly, 1 ton of Sugarcane biomass-based on Bagasse, foliage and ethanol output – has an energy content equivalent to one barrel of crude oil.

Sugarcane produces mainly two types of biomass, Cane Trash and Bagasse. Cane Trash is the field residue remaining after harvesting the Cane stalk and Bagasse is the milling by-product which remains after extracting sugar from the stalk. The potential energy value of these residues has traditionally been ignored by policy-makers and masses in developing countries. However, with rising fossil fuel prices and dwindling firewood supplies, this material is increasingly viewed as a valuable renewable energy resource.

Sugar mills have been using Bagasse to generate steam and electricity for internal plant requirements while Cane Trash remains underutilized to a great extent. Cane Trash and Bagasse are produced during the harvesting and milling process of Sugarcane which normally lasts 6 to 7 months.

Around the world, a portion of the Cane Trash is collected for sale to feed mills, while freshly cut green tops are sometimes collected for farm animals. In most cases, however, the residues are burned or left in the fields to decompose. Cane Trash, consisting of Sugarcane tops and leaves can potentially be converted into around 1kWh/kg, but is mostly burned in the field due to its bulkiness and its related high cost for collection and transportation.

bagasse-cogen

On the other hand, Bagasse has been traditionally used as a fuel in the Sugar mill itself, to produce steam for the process and electricity for its own use. In general, for every ton of Sugarcane processed in the mill, around 190 kg Bagasse is produced.

Low pressure boilers and low efficiency steam turbines are commonly used in developing countries. It would be a good business proposition to upgrade the present cogeneration systems to highly efficient, high pressure systems with higher capacities to ensure utilization of surplus Bagasse.

Biomass Energy in Vietnam

Vietnam is one of the few countries having a low level of energy consumption in the developing world with an estimated amount of 210 kg of oil equivalent per capita/year. A significant portion of the Vietnamese population does not have access to electricity. Vietnam is facing the difficult challenge of maintaining this growth in a sustainable manner, with no or minimal adverse impacts on society and the environment.

Being an agricultural country, Vietnam has very good biomass energy potential. Agricultural wastes are most abundant in the Mekong Delta region with approximately 50% of the amount of the whole country and Red River Delta with 15%. Major biomass resources includes rice husk from paddy milling stations, bagasse from sugar factories, coffee husk from coffee processing plants in the Central Highlands and wood chip from wood processing industries. Vietnam has set a target of having a combined capacity of 500 MW of biomass power by 2020, which is raised to 2,000 MW in 2030.

Rice husk and bagasse are the biomass resources with the greatest economic potential, estimated at 50 MW and 150 MW respectively. Biomass fuels sources that can also be developed include forest wood, rubber wood, logging residues, saw mill residues, sugar cane residues, bagasse, coffee husk and coconut residues.

Currently biomass is generally treated as a non-commercial energy source, and collected and used locally. Nearly 40 bagasse-based biomass power plants have been developed with a total designed capacity of 150 MW but they are still unable to connect with the national grid due to current low power prices. Five cogeneration systems selling extra electricity to national grid at average price of 4 US cents/kWh.

Biogas potential is approximately 10 billion m3/year, which can be collected from landfills, animal excrements, agricultural residues, industrial wastewater etc. The biogas potential in the country is large due to livestock population of more than 30 million, mostly pigs, cattle, and water buffalo. Although most livestock dung already is used in feeding fish and fertilizing fields and gardens, there is potential for higher-value utilization through biogas production.

It is estimated that more than 25,000 household biogas digesters with 1 to 50 m3, have been installed in rural areas. The Dutch-funded Biogas Program operated by SNV Vietnam constructed some 18,000 biogas facilities in 12 provinces between 2003 and 2005, with a second phase (2007-2010) target of 150,000 biogas tanks in both rural and semi-urban settings.

Municipal solid waste is also a good biomass resource as the amount of solid waste generated in Vietnam has been increasing steadily over the last few decades. In 1996, the average amount of waste produced per year was 5.9 million tons per annum which rose to 28 million tons per in 2008 and expected to reach 44 million tons per year by 2015.

Sugarcane Trash as Biomass Resource

Sugarcane trash (or cane trash) is an excellent biomass resource in sugar-producing countries worldwide. The amount of cane trash produced depends on the plant variety, age of the crop at harvest and soil and weather conditions. Typically it represents about 15% of the total above ground biomass at harvest which is equivalent to about 10-15 tons per hectare of dry matter. During the harvesting operation around 70-80% of the cane trash is left in the field with 20-30% taken to the mill together with the sugarcane stalks as extraneous matter.

cane-trash

Cane trash’s calorific value is similar to that of bagasse but has an advantage of having lower moisture content, and hence dries more quickly. Nowadays only a small quantity of this biomass is used as fuel, mixed with bagasse or by itself, at the sugar mill. The rest is burned in the vicinity of the dry cleaning installation, creating a pollution problem in sugar-producing nations.

Cane trash and bagasse are produced during the harvesting and milling process of sugarcane which normally lasts between 6 to 7 months. Cane trash can potentially be converted into heat and electrical energy. However, most of the trash is burned in the field due to its bulky nature and high cost incurred in collection and transportation.

Cane trash could be used as an off-season fuel for year-round power generation at sugar mills. There is also a high demand for biomass as a boiler fuel during the sugar-milling season. Sugarcane trash can also converted in biomass pellets and used in dedicated biomass power stations or co-fired with coal in power plants and cement kilns.

Burning of cane trash creates pollution in sugar-producing countries

Burning of cane trash creates pollution in sugar-producing countries

Currently, a significant percentage of energy used for boilers in sugarcane processing is provided by imported bunker oil. Overall, the economic, environmental, and social implications of utilizing cane trash in the final crop year as a substitute for bunker oil appears promising. It represents an opportunity for developing biomass energy use in the Sugarcane industry as well as for industries / communities in the vicinity.

Positive socio-economic impacts include the provision of large-scale rural employment and the minimization of oil imports. It can also develop the expertise necessary to create a reliable biomass supply for year-round power generation.

Recovery of Cane Trash

Recovery of cane trash implies a change from traditional harvesting methods; which normally consists of destroying the trash by setting huge areas of sugarcane fields ablaze prior to the harvest.  There are a number of major technical and economic issues that need to be overcome to utilize cane trash as a renewable energy resource. For example, its recovery from the field and transportation to the mill, are major issues.

Alternatives include the current situation where the cane is separated from the trash by the harvester and the two are transported to the mill separately, to the harvesting of the whole crop with separation of the cane and the trash carried out at the mill. Where the trash is collected from the field it maybe baled incurring a range of costs associated with bale handling, transportation and storage. Baling also leaves about 10-20% (1-2 tons per hectare) of the recoverable trash in the field.

A second alternative is for the cane trash to be shredded and collected separately from the cane during the harvesting process. The development of such a harvester-mounted cane trash shredder and collection system has been achieved but the economics of this approach require evaluation. A third alternative is to harvest the sugarcane crop completely which would require an adequate collection, transport and storage system in addition to a mill based cleaning plant to separate the cane from the trash .

A widespread method for cane trash recovery is to cut the cane, chop into pieces and then it is blown in two stages in the harvester to remove the trash. The amount of trash that goes along with the cane is a function of the cleaning efficiency of the harvester. The blowers are adjusted to get adequate cleaning with a bearable cane loss.

On the average 68 % of the trash is blown out of the harvester, and stays on the ground, and 32 % is taken to the mill together with the cane as extraneous matter. The technique used to recover the trash staying on the ground is baling. Several baling machines have been tested with small, large, round and square bales. Cane trash can be considered as a viable fuel supplementary to bagasse to permit year-round power generation in sugar mills.

Thus, recovery of cane trash in developing nations of Asia, Africa and Latin America implies a change from traditional harvesting methods, which normally consists of destroying the trash by setting huge areas of cane fields ablaze prior to the harvest. To recover the trash, a new so-called “green mechanical harvesting” scheme will have to be introduced. By recovering the trash in this manner, the production of local air pollutants, as well as greenhouse gases contributing to adverse climatic change, from the fires are avoided and cane trash could be used as a means of regional sustainable development.

Cane Trash Recovery in Cuba

The sugarcane harvesting system in Cuba is unique among cane-producing countries in two important respects. First, an estimated 70 % of the sugarcane crop is harvested by machine without prior burning, which is far higher than for any other country. The second unique feature of Cuban harvesting practice is the long-standing commercial use of “dry cleaning stations” to remove trash from the cane stalks before the stalks are transported to the crushing mills.

Cuba has over 900 cleaning stations to serve its 156 sugar mills. The cleaning stations are generally not adjacent to the mills, but are connected to mills by a low-cost cane delivery system – a dedicated rail network with more than 7000 km of track. The cleaning stations take in green machine-cut or manually cut cane. Trash is removed from the stalk and blown out into a storage area. The stalks travel along a conveyor to waiting rail cars. The predominant practice today is to incinerate the trash at the cleaning station to reduce the “waste” volume.