Municipal Waste Management in Poland

waste-dump-warsawMunicipal waste management in Poland has changed dramatically since the early ’90s when, as part of Poland’s privatisation program, municipal authorities were freed of their waste management obligations. The combined Polish recycling rate for dry recyclables and organic waste has increased from 5% in 2004 to 21% in 2010, according to a Copenhagen Resource Institute (CRI) study Municipal Waste Management in Poland (2013). Another source provides similar, corroborating statistics, putting the dry recycling rate in Poland at 14% and the composting rate at 7%.

The latest Eurostat data (for 2011) shows that the upward trend continuing, with the total recycled and composted reaching 28%. That is rapid rate of improvement, but leaves Poland well below the latest EU-27 average of 40% (25% recycled and 15% composted) – so what prospect is there of Poland reaching the EU’s mandatory 50% target by 2020?

Responsibility for waste disposal shifted to householders, who were left to individually contract any waste collection company of their choice. In the hard economic climate a ‘cheaper-the-better’ mentality prevailed, which did little to encourage sustainable practices. There wasn’t even an obligation on householders even to sign up for waste collection.

Landfilling was – and remains – the most common way of handling waste, but accompanying reporting and tracking methods were inadequate. Statistically, quantities of waste produced were usually larger than those collected, with the missing tonnages usually being dumped in forests or burned in domestic boilers to avoid waste disposal costs. As a result, waste management became largely uncontrolled, with a 2011 report concluding that ‘’waste management is one of the most badly neglected and at the same time one of the most urgent environmental issues for Poland.’’

Waste Management Legislation

Even after joining the EU in 2005, Poland didn’t rush to introduce reforms to improve practices and help to meet recycling targets. Only recently has Poland introduced several pieces of new waste related legislation, including:

  • Act on maintaining cleanliness and order in municipalities (2012);
  • Act on Waste (2012); and
  • Act on management of packaging and packaging waste (2013).

The first of these was revolutionary in that it gave responsibility for municipal waste collection and disposal back to municipalities. Now they are required to organise garbage collection and the separate collection of biodegradable waste and recyclable materials such as paper, metal, glass and plastic. It is expected that the new law will improve waste management control measures on a local level and greatly reduce the illegal dumping and trash burning.

The Act on Waste helps tackle the previous ‘free for all’ amongst collectors – it obliges waste handlers to act in a manner consistent with waste management principles and plans adopted at national level (by the Council of Ministers), regional level (Voivodeship) and local level (Municipality).

Poland has also this year adopted a new National Waste Management Plan, which states that an essential step towards improving the recycling rate in Poland is to increase landfill fees for recyclable, compostable or recoverable material. If acted upon, this could greatly increase the incentive to divert important municipal waste streams from landfill. The Polish market is clearly responsive to cost: in 2008 after landfill tax was significantly raised, there was a substantial reduction in waste being landfilled.

Declaration of bin-dependence

Although Polish citizens have always had to pay directly for waste collection, the new legislation has made some substantial changes to the payment system. There are now three different calculation methods. Each household is subject to a standard fee, which is then adjusted to reflect either:

  • The number of people living in a household;
  • The number of square metres covered by the property; or
  • The number of cubic metres of water used by the household per month.

The first of these options seems to be the most reasonable and has proven the most popular.

Municipalities are left to determine the standard collection fee, which as a result varies from region to region. Some municipalities charge at little as 3 Polish Zloty (around £0.56) per household, per person, per month, while some charge 20 Zloty (around £3.75).

The standard charge is also affected by a declaration made by the householder regarding waste segregation. If a property owner declares that they have separated out recyclable materials then they pay considerably lower fees. In some municipalities, this could be as low as 50% of the usual charge. Only those who declare that they don’t want to recycle pay full price. It’s rare that people do so: who would pick the most expensive option?

The problem is that some householders declare that they recycle their waste while in reality they don’t. Unfortunately, abusing the system is easy to get away with, especially since the new scheme is still in its early stages and is not yet stable. Monitoring recycling participation in order to crack down on such abuses of the system represents quite a challenging task.

Future Perspectives

Transformation periods are always hard and it is common that they bring misunderstanding and chaos. It isn’t surprising that there are problems with the new system which require ironing out, and the new legislation is nevertheless welcome. However, there is still much work to be done to provide sufficient and sustainable waste management in Poland. This will include such measures as educating the population, improving waste separation at source and securing waste treatment capacity.

Perhaps most importantly, Poland needs to take immediate action to develop its municipal waste treatment capacity across the board. If the 2020 recycling target is to be met, the country will require material recovery facilities, anaerobic digestion and in vessel composting sites, and household waste and recycling centres; and if more waste is to be diverted from landfill it will also need energy from waste (EfW) incinerators and mechanical biological treatment facilities.

According to Eurostat, only 1% of waste in Poland was incinerated in 2011. It has been confirmed so far that an EfW plant will be developed in each of Poland’s 11 biggest cities. Fortunately for Poland, the development of waste treatment installations is quite generously funded by the EU, which covers up to 80% of the total cost: EU subsidy agreements have already been signed for three of the planned EfW plants. The remaining cost will be covered by central, regional and local government.

The CRI paper presents three different scenarios for the future recycling rate in Poland. One of them is very optimistic and predicts that Poland has a chance to meet the 2020 recycling requirements, but each is based simply on a regression analysis of recent trends, rather than an analysis of the likely impact of recent and planned policy measures. What it does make clear, though, is that if Poland continues to progress as it has since 2006, it will reach the 2020 target. How many EU countries can claim that?

Note: The article is being republished with the kind permission of our collaborative partner Isonomia. The original version of the article can be found at this link.

Medical Waste Management in Developing Countries

medical-waste-managementHealthcare sector is growing at a very rapid pace, which in turn has led to tremendous increase in the quantity of medical waste generation in developing countries, especially by hospitals, clinics and other healthcare establishments. The quantity of healthcare waste produced in a typical developing country depends on a wide range of factors and may range from 0.5 to 2.5 kg per bed per day.

For example, India generates as much as 500 tons of biomedical wastes every day while Saudi Arabia produces more than 80 tons of healthcare waste daily. The growing amount of medical wastes is posing significant public health and environmental challenges across the world. The situation is worsened by improper disposal methods, insufficient physical resources, and lack of research on medical waste management. The urgent need of the hour is to healthcare sustainable in the real sense of the word.

Hazards of Healthcare Wastes

The greatest risk to public health and environment is posed by infectious waste (or hazardous medical waste) which constitutes around 15 – 25 percent of total healthcare waste. Infectious wastes may include items that are contaminated with body fluids such as blood and blood products, used catheters and gloves, cultures and stocks of infectious agents, wound dressings, nappies, discarded diagnostic samples, swabs, bandages, disposal medical devices, contaminated laboratory animals etc.

Improper management of healthcare wastes from hospitals, clinics and other facilities in developing nations pose occupational and public health risks to patients, health workers, waste handlers, haulers and general public. It may also lead to contamination of air, water and soil which may affect all forms of life. In addition, if waste is not disposed of properly, ragpickers may collect disposable medical equipment (particularly syringes) and to resell these materials which may cause dangerous diseases.

Inadequate healthcare waste management can cause environmental pollution, growth and multiplication of vectors like insects, rodents and worms and may lead to the transmission of dangerous diseases like typhoid, cholera, hepatitis and AIDS through injuries from syringes and needles contaminated with human.

In addition to public health risks associated with poor management of biomedical waste, healthcare wastes can have deleterious impacts on water bodies, air, soil as well as biodiversity. The situation is further complicated by harsh climatic conditions in many developing nations which makes disposal of medical waste more challenging.

The predominant medical waste management method in the developing world is either small-scale incineration or landfilling. However, the WHO policy paper of 2004 and the Stockholm Convention, has stressed the need to consider the risks associated with the incineration of healthcare waste in the form of particulate matter, heavy metals, acid gases, carbon monoxide, organic compounds, pathogens etc.

In addition, leachable organic compounds, like dioxins and heavy metals, are usually present in bottom ash residues. Due to these factors, many industrialized countries are phasing out healthcare incinerators and exploring technologies that do not produce any dioxins. Countries like United States, Ireland, Portugal, Canada and Germany have completely shut down or put a moratorium on medical waste incinerators.

Alternative Treatment Technologies

The alternative technologies for healthcare waste disposal are steam sterilization, advanced steam sterilization, microwave treatment, dry heat sterilization, alkaline hydrolysis, biological treatment and plasma gasification.

Nowadays, steam sterilization (or autoclaving) is the most common alternative treatment method. Steam sterilization is done in closed chambers where both heat and pressure are applied over a period of time to destroy all microorganisms that may be present in healthcare waste before landfill disposal. Among alternative systems, autoclaving has the lowest capital costs and can be used to process up to 90% of medical waste, and are easily scaled to meet the needs of any medical organization.

Advanced autoclaves or advanced steam treatment technologies combine steam treatment with vacuuming, internal mixing or fragmentation, internal shredding, drying, and compaction thus leading to as much as 90% volume reduction. Advanced steam systems have higher capital costs than standard autoclaves of the same size. However, rigorous waste segregation is important in steam sterilization in order to exclude hazardous materials and chemicals from the waste stream.

Microwave treatment is a promising technology in which treatment occurs through the introduction of moist heat and steam generated by microwave energy. A typical microwave treatment system consists of a treatment chamber into which microwave energy is directed from a microwave generator. Microwave units generally have higher capital costs than autoclaves, and can be batch or semi-continuous.

Chemical processes use disinfectants, such as lime or peracetic acid, to treat waste. Alkaline digestion is a unique type of chemical process that uses heated alkali to digest tissues, pathological waste, anatomical parts, or animal carcasses in heated stainless steel tanks. Biological processes, like composting and vermicomposting, can also be used to degrade organic matter in healthcare waste such as kitchen waste and placenta.

Plasma gasification is an emerging solution for sustainable management of healthcare waste. A plasma gasifier is an oxygen-starved reactor that is operated at the very high temperatures which results in the breakdown of wastes into hydrogen, carbon monoxide, water etc. The main product of a plasma gasification plant is energy-rich syngas which can be converted into heat, electricity and liquids fuels. Inorganic components in medical wastes, like metals and glass, get converted into a glassy aggregate.

Solid Waste Management in Kuwait

Kuwait, being one of the richest countries, is among the highest per capita waste generators in the world. Each year more than 2 million tons of solid waste is generated in the tiny Arab nation. High standards of living and rapid economic growth has been a major factor behind very high per capita waste generation of 1.4 to 1.5 kg per day.

Waste Disposal Method

The prevalent solid waste management method in Kuwait is landfill burial. Despite being a small country, Kuwait has astonishingly high number of landfills. There are 18 landfills, of which 14 sites are closed and 4 sites are still in operation. These landfills act as dumpsites, rather than engineered landfills.

Menace of Landfills

Infact, landfill sites in Kuwait are notorious for causing severe public health and environmental issues. Besides piling up huge amounts of garbage, landfill sites generate huge amount of toxic gases (methane, carbon dioxide etc) and plagued by spontaneous fires. Due to fast paced urban development, residential areas have expanded to the edges of landfill sites thus causing grave danger to public health.

The total land area of Kuwait is around 17,820 sq. km, out of which more than 18 sq. km is occupied by landfills. Area of the landfill sites ranges from tens to hundreds of hectares with waste deposition depth varying from 3 to 30 meters.

All kind of wastes, including municipal wastes, food wastes, industrial wastes, construction and demolition debris etc are dumped at these sites. Infact, about 90 percent of the domestic waste is sent to landfills which imply that more landfills will be required to tackle rapidly increasing volumes of solid wastes.

Most of the landfill sites have been closed for more than 20 years due to operational problems and proximity to new residential, commercial and industrial areas. These sites include Sulaibiyah, Kabed, Al Qurain, Shuaiba, Jleeb AI Shuyoukh, West Yarmouk, AI Wafra among others. Migration of leachate beyond landfill site boundaries is a frequent problem noticed across Kuwait. Groundwater contamination has emerged as a serious problem because groundwater occurs at shallow depths throughout the country.

The major landfill sites operated by municipality for solid waste disposal are Jleeb AI Shuyoukh, Sulaibiyah and Al-Qurain. The Qurain landfill, with area of 1 sq. km, was used for dumping of municipal solid waste and construction materials from 1975 until 1985 with total volume of dumped waste being 5 million m3.

The Sulaibiyah landfill site received more than 500 tons of waste per day from 1980 to 2000 with area spanning 3 sq. km. Jleeb AI Shuyoukh, largest landfill site in Kuwait with area exceeding 6 sq. km, received 2500 tons per day of household and industrial waste between 1970 and 1993. Around 20 million m3 of wastes was dumped in this facility during its operational period.

Over the years, most of the dumpsites in Kuwait have been surrounded by residential and commercial areas due to urban development over the years. Uncontrolled dumpsites were managed by poorly-trained staff resulting in transformation of dumpsites in breeding grounds for pathogens, toxic gases and spontaneous fires.

Most of the landfill sites have been forced to close, much before achieving their capacities, because of improper disposal methods and concerns related to public health and environment. Due to fast-paced industrial development and urban expansion, some of the landfills are located on the edges of residential, as is the case of Jleeb Al-Shuyoukh and Al-Qurain sites, endangering the lives of hundreds of thousands of people.

Solid Waste Management in Morocco

solid_waste_moroccoSolid waste management is one of the major environmental problems threatening the Kingdom of Morocco. More than 5 million tons of solid waste is generated across the country with annual waste generation growth rate touching 3 percent. The proper disposal of municipal solid waste in Morocco is exemplified by major deficiencies such as lack of proper infrastructure and suitable funding in areas outside of major cities.

According to the World Bank, it was reported that before a recent reform in 2008 “only 70 percent of urban wastes was collected and less than 10 percent of collected waste was being disposed of in an environmentally and socially acceptable manner. There were 300 uncontrolled dumpsites, and about 3,500 waste-pickers, of which 10 percent were children, were living on and around these open dumpsites.”

It is not uncommon to see trash burning as a means of solid waste disposal in Morocco.  Currently, the municipal waste stream is disposed of in a reckless and unsustainable manner which has major effects on public health and the environment.  The lack of waste management infrastructure leads to burning of trash as a form of inexpensive waste disposal.  Unfortunately, the major health effects of burning trash are either widely unknown or grossly under-estimated to the vast majority of the population in Morocco.

The good news about the future of Morocco’s MSW management is that the World Bank has allocated $271.3 million to the Moroccan government to develop a municipal waste management plan.  The plan’s details include restoring around 80 landfill sites, improving trash pickup services, and increasing recycling by 20%, all by the year 2020. While this reform is expected to do wonders for the urban population one can only hope the benefits of this reform trickle down to the 43% of the Moroccan population living in rural areas, like those who are living in my village.

Needless to say, even with Morocco’s movement toward a safer and more environmentally friendly MSW management system there is still an enormous population of people including children and the elderly who this reform will overlook.   Until more is done, including funding initiatives and an increase in education, these people will continue to be exposed to hazardous living conditions because of unsuitable funding, infrastructure and education.

Circular Economy: Past, Present and Future

For a society accustomed to the achievements of a linear economy, the transition to a circular economic system is a hard task even to contemplate. Although the changes needed may seem daunting, it is important to remember that we have already come a long way. However, the history of the waste hierarchy has taught that political perseverance and unity of approach are essential to achieving long term visions in supply chain management.

Looking back, it is helpful to view the significance of the Lansink’s Ladder in the light of the sustainability gains it has already instigated. From the outset, the Ladder encountered criticism, in part because the intuitive preference order it expresses is not (and has never been put forward as) scientifically rigorous. Opposition came from those who feared the hierarchy would impede economic growth and clash with an increasingly consumerist society. The business community expressed concerns about regulatory burdens and the cost of implementing change.

Circular-Economy

However, such criticism was not able to shake political support, either in Holland where the Ladder was adopted in the Dutch Environmental Protection Act of 1979, or subsequently across Europe, as the Waste Hierarchy was transposed into national legislation as a result of the revised Waste Framework Directive.

Prevention, reuse and recycling have become widely used words as awareness has increased that our industrial societies will eventually suffer a shortage of raw materials and energy. So, should we see the waste hierarchy as laying the first slabs of the long road to a circular economy? Or is the circular economy a radical new departure?

Positive and negative thinking

There have been two major transitionary periods in waste management: public health was the primary driver for the first, from roughly 1900 to 1960, in which waste removal was formalised as a means to avoid disease. The second gained momentum in the 1980s, when prevention, reuse and recovery came on the agenda. However, consolidation of the second transition has in turn revealed new drivers for a third. Although analysing drivers is always tricky – requiring a thorough study of causes and effects – a general indication is helpful for further discussion. Positive (+) and negative (-) drivers for a third transition may be:

(+) The development of material supply chain management through the combination of waste hierarchy thinking with cradle to cradle eco design;

(+) The need for sustainable energy solutions;

(+) Scarcity of raw materials necessary for technological innovation; and

(+) Progressive development of circular economy models, with increasing awareness of social, financial and economic barriers.

(-) Growth of the global economy, especially in China and India, and later in Africa;

(-) Continued growth in global travel;

(-) Rising energy demand, exceeding what can be produced from renewable energy sources and threatening further global warming;

(-) Biodiversity loss, causing a further ecological impoverishment; and

(-) Conservation of the principle of ownership, which hinders the development of the so-called ‘lease society’. 

A clear steer

As the direction, scale and weight of these drivers are difficult to assess, it’s necessary to steer developments at all levels to a sustainable solution. The second transition taught that governmental control appears indispensable, and that regulation stimulates innovation so long as adequate space is left for industry and producers to develop their own means of satisfying their legislated responsibilities.

The European Waste Framework Directive has been one such stimulatory piece of legislation. Unfortunately, the EC has decided to withdraw its Circular Economy package, which would otherwise now be on track to deliver the additional innovation needed to achieve its goals – including higher recycling targets. Messrs. Juncker and Timmermans must now either bring forward the more ambitious legislation they have hinted at, or explain why they have abandoned the serious proposals of their predecessors.

Perhaps the major differences between Member States and other countries may require a preliminary two-speed policy, but any differences in timetable between Western Europe and other countries should not stand in the way of innovation, and differences of opinion between the European Parliament and the Commission must be removed for Europe to remain credible.

Governmental control requires clear rules and definitions, and for legislative terminology to be commensurate with policy objectives. One failing in this area is the use of the generic term ‘recovery’ to cover product reuse, recycling and incineration with energy recovery, which confuses the hierarchy’s preference order. The granting of R1 status to waste incineration plants, although understandable in terms of energy diversification, turns waste processors into energy producers benefiting from full ovens. Feeding these plants reduces the scope for recycling (e.g. plastics) and increases COemissions. When relatively inefficient incinerators still appear to qualify for R1 status, it offers confusing policy signals for governments, investors and waste services providers alike.

The key role for government also is to set clear targets and create the space for producers and consumers to generate workable solutions. The waste hierarchy’s preference order is best served by transparent minimum standards, grouped around product reuse, material recycling or disposal by combustion. For designated product or material categories, multiple minimum standards are possible following preparation of the initial waste streams, which can be tightened as technological developments allow.

Where the rubber meets the road

As waste markets increase in scale, are liberalised, and come under international regulation, individual governmental control is diminished. These factors are currently playing out in the erratic prices of secondary commodities and the development of excess incinerator capacity in some nations that has brought about a rise in RDF exports from the UK and Italy. Governments, however, may make a virtue of the necessity of avoiding the minutiae: ecological policy is by definition long-term and requires a stable line; day to day control is an impossible and undesirable task.

The road to the third transition – towards a circular economy – requires a new mind-set from government that acknowledges and empowers individuals. Not only must we approach the issue from the bottom-up, but also from the side and above. Consumer behaviour must be steered by both ‘soft’ and ‘hard’ controls: through information and communication, because of the importance of psychological factors; but also through financial instruments, because both consumers and industry are clearly responsive to such stimuli.

Where we see opposition to deposit return schemes, it comes not from consumers but from industry, which fears the administrative and logistical burden. The business community must be convinced of the economic opportunities of innovation. Material supply chain management is a challenge for designers and producers, who nevertheless appreciate the benefits of product lifetime extensions and reuse. When attention to environmental risks seems to lapse – for example due to financial pressures or market failures – then politics must intervene.

Government and industry should therefore get a better grip on the under-developed positive drivers of the third transition, such as eco design, secondary materials policy, sustainable energy policy, and research and development in the areas of bio, info, and nanotechnologies. 

Third time’s the charm

Good supply chain management stands or falls with the way in which producers and consumers contribute to the policies supported by government and society. In order that producers and consumers make good on this responsibility, government must first support their environmental awareness.

The interpretation of municipal duty of care determines options for waste collection, disposal and processing. Also essential is the way in which producer responsibility takes shape, and the government must provide a clear separation of private and public duties. Businesses may be liable for the negative aspects of unbridled growth and irresponsible actions. It is also important for optimal interaction with the European legislators: a worthy entry in Brussels is valuable because of the international aspects of the third transition. Finally, supply chain management involves the use of various policy tools, including:

  • Rewarding good behaviour
  • Sharpening minimum standards
  • Development and certification of CO2 tools
  • Formulation and implementation of end-of-waste criteria
  • Remediation of waste incineration with low energy efficiency
  • Restoration or maintenance of a fair landfill tax
  • Application of the combustion load set at zero

‘Seeing is believing’ is the motto of followers of the Apostle Thomas, who is chiefly remembered for his propensity for doubt. The call for visible examples is heard ever louder as more questions are raised around the feasibility of product renewal and the possibilities of a circular economy.

Ultimately, the third transition is inevitable as we face a future of scarcity of raw materials and energy. However, while the direction is clear, the tools to be employed and the speed of change remain uncertain. Disasters are unnecessary to allow the realisation of vital changes; huge leaps forward are possible so long as government – both national and international – and society rigorously follow the preference order of the waste hierarchy. Climbing Lansink’s Ladder remains vital to attaining a perspective from which we might judge the ways in which to make a circle of our linear economy.

Note: The article is being republished with the permission of our collaborative partner Isonomia. The original article can be found at this link.

Waste Management in Peshawar

Peshawar is among the biggest cities in Pakistan with estimated population of 4 million inhabitants. Like most of the cities in Pakistan, solid waste management is a big challenge in Peshawar as the city generate 600-700 tons of municipal waste every day. with per capita generation of about 0.3 to 0.4 kg per day. Major part of the Peshawar population belongs to low and middle income area and based upon this fact, waste generation rate per capita varies in different parts of the city.

Municipal solid waste collection and disposal services in the city are poor as approximately 60 per cent of the solid wastes remain at collection points, or in streets, where it emits a host of pollutants into the air, making it unacceptable for breathing. A significant fraction of the waste is dumped in an old kiln depression around the southern side of the city where scavengers, mainly comprising young children, manually sort out recyclable materials such as iron, paper, plastics, old clothes etc.

Peshawar has 4 towns and 84 union councils (UCs). Solid waste management is one of their functions. Now city government has planned to build a Refuse Derived Fuel (RDF), Composting Plant and possibly a Waste to Energy Power Plant which would be a land mark of Peshawar city administration.

The UCs are responsible for door to door collection of domestic waste and a common shifting practice with the help of hand carts to a central pick-up points in the jurisdiction of each UC. Town Council is responsible for collection and transporting the mixed solid waste to the specified dumps which ends up at unspecified depressions, agricultural land and roadside dumps.

Open dumping of municipal wastes is widely practiced in Peshawar

Presently, there are two sites namely Hazar Khwani and Lundi Akhune Ahmed which are being used for the purpose of open dumping. Scavenging is a major activity of thousands of people in the city. An alarming and dangerous practice is the burning of the solid waste in open dumps by scavengers to obtain recyclables like glass and metals.

Almost 50 percent of recyclables are scavenged at transfer stations from the waste reaching at such points. The recyclable ratio that remains in the house varies and cannot be recovered by the authorities unless it is bought directly from the households. Only the part of recyclables reaching a certain bin or secondary transfer station can be exploited.

In some areas of city where waste is transported by private companies from transfer points to the disposal site out study found that scavengers could only get about 35% of the recyclables from the waste at transfer station. Considering the above fact, it can be inferred that in case municipality introduces efficient waste transfer system in the city, the amount of recyclables reaching the disposal facility may increase by 30% of the current amount. In case house-to-house collection is introduced the municipality will be able to take hold of 90% of the recyclables in the waste stream being generated from a household.

The Technology Revolutionizing Commercial Waste Management

Every single one of us can do something to improve our impact on the planet, but it is a given that businesses of all sizes have a bigger footprint than families – commercial accounts for 12% of total greenhouse gas emissions. A big factor of that is waste management. From the physical process of picking up garbage, to the methane-released process of decomposition, there are numerous factors that add up to create a large carbon footprint.

Between hiring green focused waste management solutions and recycling in a diligent fashion, there are a few technologies that are helping to break down the barrier between commercial waste management and an environmentally positive working environment.

Cleaning up commercial kitchens

A key form of commercial waste is food waste. Between the home and restaurant, it is estimated by the US Department of Agriculture that 133 billion pounds of food is wasted every year. Much will end up in the landfill. How is technology helping to tackle this huge source of environmental waste? Restaurants themselves are benefiting from lower priced and higher quality commercial kitchen cooking equipment, that helps to raise standards and reduce wastage.

Culinary appliances for varied cuisines also benefit from a new process being developed at the Netherland’s Wageningen University. A major driver of food waste is rejected wholesale delivery, much of which will be disposed of in landfill. The technology being developed in Holland aims to reduce wastage by analyzing food at the source, closer to where recycling will be achievable.

Route optimization

Have you ever received a parcel from an online retailer only to find the box greatly outsizes the contents? On the face of it, this is damaging to the environment. However, many retailers use complex box sorting algorithms. The result is that the best route is chosen on balance, considering the gas needed to make the journey, the amount of stock that can be delivered and the shortest route for the driver. This is an area of intense technological innovation.

The National Waste & Recycling Association reported in 2017 on how 2018 would see further advances, particularly with the integration of artificial intelligence and augmented reality into the route-finding process.

Balancing the landfill carbon footprint

It is well established that landfills are now being used to power wind turbines, geothermal style electricity and so on. They are being improved to minimize the leachate into groundwater systems and to prevent methane escaping into the atmosphere. However, further investigation is being pushed into the possibility of using landfill as a carbon sequester.

AI-based waste management systems can help in route optimization and waste disposal

Penn State University, Lawrence Berkeley and Texas University recently joined together to secure a $2.5m grant into looking into the function of carbon, post-sequestration. This will help to shed light on the carbon footprint and create a solid foundation on which future technology can thrive.

Businesses of all sizes have an impact on the carbon footprint of the world. The various processes that go into making a business profitable and have a positive impact on their local and wider communities need to be addressed. As with many walks of life, technology is helping to bridge the gap.

Waste Management in Global North and Global South

Waste management is highly context specific. Therefore it is important to distinguish between the conditions in the Global North and the Global South. Recent ILO figures suggest that 24 million people around the world are involved in the informal waste recycling sector, 80% of whom are waste pickers. Some estimates say that 1% of urban population in developing countries makes their primary household income through informal sector waste management activities.  In Latin America alone, 4-5 million waste pickers earn their livelihood by being a part of the global recyclables supply chain.

waste-management-latin-america

Municipal budgets in the Global South are often limited and only a small percentage of that budget is assigned to waste management as compared to other municipal services. In the Global North waste management is recognized as a necessary public good and there is a greater willingness to pay for this service. Solid waste management (e.g. waste collection, transportation and recycling) is generally more labour intensive than in North America and Europe.

Urbanization in the Global South is often haphazard and unplanned; creating pockets of high and low income neighbourhoods. This creates logistical issues for the waste management service provision limiting options for viable waste collection and transportation. It is often the informal sector that steps in to fill this service gap.

The maturity and strength of the legal framework differs between the Global South and Global North. In North America and Europe the legal framework of waste management actively promotes and provides incentives for waste reduction, reuse and recovery whereas, despite recent developments in some countries, in Latin America legal frameworks remain focused upon mixed waste collection, transportation and disposal.

Recycling rates in Argentina are at 11% of the total waste stream with 95% of this material is recovered by the informal sector. This situation is replicated in many other countries. The informal sector recovers between 50% (e.g. Mexico) and 90% (e.g. Nicaragua) of the waste recovered and in the different countries of the region. Resource recovery and recycling is driven by market conditions. Materials that have a value are diverted from landfill through an informal network of recyclers and waste collectors.

The composition of waste is also very different in the Global South where organic waste is a much larger percentage of the waste stream. Because of the high percentage of organics in the waste stream in many cities in the Global South, innovations in decentralised composting and small scale biogas have been seen across the Global South (particularly in India) and can be used effectively by the informal sector, making a zero waste future a real possibility.

Role of Informal Recycling Sector

The informal sector can be highly effective at collecting and diverting garbage from landfill. When empowered with a facilitating legal framework, and collectively organized, the informal sector can be a key part of a sustainable resource recovery system. Using people power to increase recycling and diversion rates decreases the need for expensive, fixed, high technology solutions.

Understanding that the context for waste management is different between the Global North and Global South, and even in different areas within a city or region, means that no two situations will be the same. However, if there is one principle to follow it may well be to consider the context and look for the simplest solution. The greenest cities of the future may well be those that use flexible, adaptable solutions and maximize the work that the informal sector is already doing.

Note: This excerpt is being published with the permission of our collaborative partner Be Waste Wise. The original excerpt and its video recording can be found at this link

Waste Management in Gaza

With population of approximately 1.75 million, waste management is one of the most serious challenges confronting the local authorities. The daily solid waste generation across Gaza is more than 1300 tons which is characterized by per capita waste generation of 0.35 to 1.0 kg. Scarcity of waste disposal sites coupled with huge increase in waste generation is leading to serious environmental and human health impacts on the population.

The severity of the crisis is a direct consequence of continuing blockade by Israeli Occupation Forces and lack of financial assistance from international donor. Israeli Occupation Forces deliberately destroyed most of the sewage infrastructure in the Gaza Strip, during 2008-2009 Gaza War inflicting heavy damage to sewage pipes, water tanks, wastewater treatment plants etc.

There are three landfills in Gaza Strip – one each in southern and central part of Gaza and one in Gaza governorate. In addition, there are numerous unregulated dumpsites scattered across rural and urban areas which are not fenced, lined or monitored. Around 52% of the MSW stream is made up of organic wastes.

Domestic, industrial and medical wastes are often dumped near cities and villages or burned and disposed of in unregulated disposal sites which cause soil, air and water pollution, leading to health hazards and ecological damage. The physical damage caused to Gaza’s infrastructure by repeated Israeli aggression has been a major deterred in putting forward a workable solid waste management strategy in the Strip.

The sewage disposal problem is assuming alarming proportions. The Gaza Strip’s sewage service networks cover most areas, except for Khan Yunis and its eastern villages where only 40% of the governorate is covered. There are only three sewage water treatment stations in Gaza Strip – in Beit Lahia, Gaza city and Rafah – which are unable to cope with the increasing population growth rate. The total quantity of produced sewage water is estimated at 45 million m3 per annum, in addition to 3000 cubic meters of raw sewage water discharged from Gaza Strip directly into the sea every day. Sewage water discharge points are concentrated on the beaches of Gaza city, Al Shate’ refugee camp and Deir El Balah.

The continuous discharge of highly contaminated sewage water from Gaza Strip in the Mediterranean shores is causing considerable damage to marine life in the area. The beaches of Gaza City are highly polluted by raw sewage. In addition, groundwater composition in Gaza Strip is marked by high salinity and nitrate content which may be attributed to unregulated disposal of solid and liquid wastes from domestic, industrial and agricultural sources. The prevalent waste management scenario demands immediate intervention of international donors, environmental agencies and regional governments in order to prevent the situation from assuming catastrophic proportions.

Waste Management in Qatar

Waste management is one of the most serious environmental challenges faced by the tiny Gulf nation of Qatar. mainly on account of high population growth rate, urbanization, industrial growth and economic expansion. The country has one of the highest per capita waste generation rates worldwide of 1.8 kg per day. Qatar produces more than 2.5 million tons of municipal solid waste each year. Solid waste stream is mainly comprised of organic materials (around 60 percent) while the rest of the waste steam is made up of recyclables like glass, paper, metals and plastics.

Municipalities are responsible for solid waste collection in Qatar both directly, using their own logistics, and indirectly through private sector contract. Waste collection and transport is carried out by a large fleet of trucks that collect MSW from thousands of collection points scattered across the country.

The predominant method of solid waste disposal is landfilling. The collected is discharged at various transfer stations from where it is sent to the landfill. There are three landfills in Qatar; Umm Al-Afai for bulky and domestic waste, Rawda Rashed for construction and demolition waste, and Al-Krana for sewage wastes. However, the method of waste disposal by landfill is not a practical solution for a country like Qatar where land availability is limited.

Solid Waste Management Strategy

According to Qatar National Development Strategy 2011-2016, the country will adopt a multi-faceted strategy to contain the levels of waste generated by households, commercial sites and industry – and to promote recycling initiatives. Qatar intends to adopt integrated waste hierarchy of prevention, reduction, reuse, recycling, energy recovery, and as a last option, landfill disposal.

A comprehensive solid waste management plan is being implemented which will coordinate responsibilities, activities and planning for managing wastes from households, industry and commercial establishments, and construction industry. The target is to recycle 38 percent of solid waste, up from the current 8 percent, and reduce domestic per capita waste generation.

Five waste transfer stations have been setup in South Doha, West Doha, Industrial Area, Dukhan and Al-Khor to reduce the quantity of waste going to Umm Al-Afai landfill. These transfer stations are equipped with material recovery facility for separating recyclables such as glass, paper, aluminium and plastic.

Domestic Solid Waste Management Centre

One of the most promising developments has been the creation of Domestic Solid Waste Management Centre (DSWMC) at Mesaieed. This centre is designed to maximize recovery of resources and energy from waste by installing state-of-the-art technologies for separation, pre-processing, mechanical and organic recycling, and waste-to-energy and composting technologies. At its full capacity, it will treat 1550 tons of waste per day, and is expected to generate enough power for in-house requirements, and supply a surplus of 34.4 MW to the national grid.

Future Outlook

While commendable steps are being undertaken to handle solid waste, the Government should also strive to enforce strict waste management legislation and create mass awareness about 4Rs of waste management viz. Reduce, Reuse, Recycle and Recovery. Legislations are necessary to ensure compliance, failure of which will attract a penalty with spot checks by the Government body entrusted with its implementation.

Improvement in curbside collection mechanism and establishment of material recovery facilities and recycling centres may also encourage public participation in waste management initiatives. When the Qatar National Development Strategy 2011-2016 was conceived, the solid waste management facility plant at Mesaieed was a laudable solution, but its capacity has been overwhelmed by the time the project was completed. Qatar needs a handful of such centers to tackle the burgeoning garbage disposal problem.