Collection Systems for Agricultural Biomass

Biomass collection involves operations pertaining to gathering, packaging, and transporting biomass to a nearby site for temporary storage. The amount of biomass resource that can be collected at a given time depends on a variety of factors. In case of agricultural residues, these considerations include the type and sequence of collection operations, the efficiency of collection equipment, tillage and crop management practices, and environmental restrictions, such as the need to control soil erosion, maintain soil productivity, and maintain soil carbon levels.

The most conventional method for collecting biomass is baling which can be either round or square. Some of the important modern biomass collection operations have been discussed below:


Large square bales are made with tractor pulled balers. A bale accumulator is pulled behind the baler that collects the bales in group of 4 and leaves them on the field. At a later date when available, an automatic bale collector travels through the field and collects the bales.

The automatic bale collector travels to the side of the road and unloads the bales into a stack. If the automatic bale collector is not available bales may be collected using a flat bed truck and a front end bale loader. A loader is needed at the stack yard to unload the truck and stack the bales. The stack is trapped using a forklift and manual labor.


When biomass is dry, a loafer picks the biomass from windrow and makes large stacks. The roof of the stacker acts as a press pushing the material down to increase the density of the biomass. Once filled, loafer transports the biomass to storage area and unloads the stack. The top of the stack gets the dome shape of the stacker roof and thus easily sheds water.

Dry Chop

In this system a forage harvester picks up the dry biomass from windrow, chops it into smaller pieces (2.5 – 5.0 cm). The chopped biomass is blown into a forage wagon traveling along side of the forage harvester. Once filled, the forage wagon is pulled to the side of the farm and unloaded. A piler (inclined belt conveyor) is used to pile up the material in the form of a large cone.

Wet Chop

Here a forage harvester picks up the dry or wet biomass from the windrow. The chopped biomass is blown into a forage wagon that travels along side of the harvester. Once filled, the wagon is pulled to a silage pit where biomass is compacted to produce silage.

Whole Crop Harvest

The entire material (grain and biomass) is transferred to a central location where the crop is fractionated into grain and biomass.  The McLeod Harvester developed in Canada fractionates the harvested crop into straw and graff (graff is a mixture of grain and chaff). The straw is left on the field. Grain separation from chaff and other impurities take place in a stationary system at the farmyard.

McLeod Harvester fractionates the harvested crop into straw and graff

For the whole crop baling, the crop is cut and placed in a windrow for field drying. The entire crop is then baled and transported to the processing yard. The bales are unwrapped and fed through a stationary processor that performs all the functions of a normal combine. Subsequently, the straw is re-baled.

Properties and Uses of POME

POMEPalm Oil processing gives rise to highly polluting waste-water, known as Palm Oil Mill Effluent (POME), which is often discarded in disposal ponds, resulting in the leaching of contaminants that pollute the groundwater and soil, and in the release of methane gas into the atmosphere. POME is an oily wastewater generated by palm oil processing mills and consists of various suspended components. This liquid waste combined with the wastes from steriliser condensate and cooling water is called palm oil mill effluent.

On average, for each ton of FFB (fresh fruit bunches) processed, a standard palm oil mill generate about 1 tonne of liquid waste with biochemical oxygen demand 27 kg, chemical oxygen demand 62 kg, suspended solids (SS) 35 kg and oil and grease 6 kg. POME has a very high BOD and COD, which is 100 times more than the municipal sewage.

POME is a non-toxic waste, as no chemical is added during the oil extraction process, but will pose environmental issues due to large oxygen depleting capability in aquatic system due to organic and nutrient contents. The high organic matter is due to the presence of different sugars such as arabinose, xylose, glucose, galactose and manose. The suspended solids in the POME are mainly oil-bearing cellulosic materials from the fruits. Since the POME is non-toxic as no chemical is added in the oil extraction process, it is a good source of nutrients for microorganisms.

Biogas Potential of POME

POME is always regarded as a highly polluting wastewater generated from palm oil mills. However, reutilization of POME to generate renewable energies in commercial scale has great potential. Anaerobic digestion is widely adopted in the industry as a primary treatment for POME. Biogas is produced in the process in the amount of 20 mper ton FFB. This effluent could be used for biogas production through anaerobic digestion. At many palm oil mills this process is already in place to meet water quality standards for industrial effluent. The gas, however, is flared off.

Palm oil mills, being one of the largest industries in Malaysia and Indonesia, effluents from these mills can be anaerobically converted into biogas which in turn can be used to generate power through CHP systems such as gas turbines or gas-fired engines. A cost effective way to recover biogas from POME is to replace the existing ponding/lagoon system with a closed digester system which can be achieved by installing floating plastic membranes on the open ponds.

As per conservative estimates, potential POME produced from all Palm Oil Mills in Indonesia and Malaysia is more than 50 million m3 each year which is equivalent to power generation capacity of more than 800 GW.

New Trends

Recovery of organic-based product is a new approach in managing POME which is aimed at getting by-products such as volatile fatty acid, biogas and poly-hydroxyalkanoates to promote sustainability of the palm oil industry.  It is envisaged that POME can be sustainably reused as a fermentation substrate in production of various metabolites through biotechnological advances. In addition, POME consists of high organic acids and is suitable to be used as a carbon source.

POME has emerged as an alternative option as a chemical remediation to grow microalgae for biomass production and simultaneously act as part of wastewater treatment process. POME contains hemicelluloses and lignocelluloses material (complex carbohydrate polymers) which result in high COD value (15,000–100,000 mg/L).


Utilizing POME as nutrients source to culture microalgae is not a new scenario, especially in Malaysia. Most palm oil millers favor the culture of microalgae as a tertiary treatment before POME is discharged due to practically low cost and high efficiency. Therefore, most of the nutrients such as nitrate and ortho-phosphate that are not removed during anaerobic digestion will be further treated in a microalgae pond. Consequently, the cultured microalgae will be used as a diet supplement for live feed culture.

In recent years, POME is also gaining prominence as a feedstock for biodiesel production, especially in the European Union. The use of POME as a feedstock in biodiesel plants requires that the plant has an esterification unit in the back-end to prepare the feedstock and to breakdown the FFA. In recent years, biomethane production from POME is also getting traction in Indonesia and Malaysia.

The Technology Revolutionizing Commercial Waste Management

Every single one of us can do something to improve our impact on the planet, but it is a given that businesses of all sizes have a bigger footprint than families – commercial accounts for 12% of total greenhouse gas emissions. A big factor of that is waste management. From the physical process of picking up garbage, to the methane-released process of decomposition, there are numerous factors that add up to create a large carbon footprint.

Between hiring green focused waste management solutions and recycling in a diligent fashion, there are a few technologies that are helping to break down the barrier between commercial waste management and an environmentally positive working environment.

Cleaning up commercial kitchens

A key form of commercial waste is food waste. Between the home and restaurant, it is estimated by the US Department of Agriculture that 133 billion pounds of food is wasted every year. Much will end up in the landfill. How is technology helping to tackle this huge source of environmental waste? Restaurants themselves are benefiting from lower priced and higher quality commercial kitchen cooking equipment, that helps to raise standards and reduce wastage.

Culinary appliances for varied cuisines also benefit from a new process being developed at the Netherland’s Wageningen University. A major driver of food waste is rejected wholesale delivery, much of which will be disposed of in landfill. The technology being developed in Holland aims to reduce wastage by analyzing food at the source, closer to where recycling will be achievable.

Route optimization

Have you ever received a parcel from an online retailer only to find the box greatly outsizes the contents? On the face of it, this is damaging to the environment. However, many retailers use complex box sorting algorithms. The result is that the best route is chosen on balance, considering the gas needed to make the journey, the amount of stock that can be delivered and the shortest route for the driver. This is an area of intense technological innovation.

The National Waste & Recycling Association reported in 2017 on how 2018 would see further advances, particularly with the integration of artificial intelligence and augmented reality into the route-finding process.

Balancing the landfill carbon footprint

It is well established that landfills are now being used to power wind turbines, geothermal style electricity and so on. They are being improved to minimize the leachate into groundwater systems and to prevent methane escaping into the atmosphere. However, further investigation is being pushed into the possibility of using landfill as a carbon sequester.

AI-based waste management systems can help in route optimization and waste disposal

Penn State University, Lawrence Berkeley and Texas University recently joined together to secure a $2.5m grant into looking into the function of carbon, post-sequestration. This will help to shed light on the carbon footprint and create a solid foundation on which future technology can thrive.

Businesses of all sizes have an impact on the carbon footprint of the world. The various processes that go into making a business profitable and have a positive impact on their local and wider communities need to be addressed. As with many walks of life, technology is helping to bridge the gap.

Clean Cookstoves: An Urgent Necessity

Globally, three billion people in the developing nations are solely dependent on burning firewood, crop residues, animal manure etc for preparing their daily meals on open fires, mud or clay stoves or simply on three rocks strategically placed to balance a cooking vessel.  The temperature of these fires are lower and produce inefficient burning that results in black carbon and other short-lived but high impact pollutants.

These short-lived pollutants not only affect the persons in the immediate area but also contribute much harmful gases more potent than carbon dioxide and methane. For the people in the immediate area, their health is severely hampered as this indoor or domestic air pollution results in significantly higher risks of pneumonia and chronic bronchitis.

To remedy the indoor air pollution (IAP) and health-related issues as well as the environmental pollution in the developing world, clean cookstoves are the way to advance. But to empower rural users to embrace the advanced cookstoves, and achieve sustainable success requires a level of socio-cultural and economic awareness that is related directly to this marginalized group. The solution needs to be appropriate for the style of cooking of the group which means one stove model will not suit or meet the needs and requirements of all developing nation people groups.

Clean cookstoves can significantly reduce health problems caused by indoor air pollution in rural areas

Consideration for such issues as stove top and front loading stove cooking, single pot and double pot cooking, size of the typical cooking vessel and the style of cooking are all pieces of information needed to complete the picture.  Historically, natural draft systems were devised to aid the combustion or burning of the fuels, however, forced draft stoves tend to burn cleaner with better health and environmental benefits. Regardless of cookstove design, the components need to be either made locally or at least available locally so that the long term life of the stove is maintainable and so sustainable.

Now, if the cookstove unit can by powered by  simple solar or biomass system, this will change the whole nature of the life style and domestic duties of the chief cook and the young siblings who are typically charged with collecting the natural firewood to meet the cooking requirement.

Therefore the cookstoves need to be designed and adapted for the people group and their traditional cooking habits, and not in the reverse order. To assess the overall performance of the green cooking stoves requires simple but effective measures of the air quality. The two elements that need to be measured are the black carbon emissions and the temperature of the cooking device.  This can be achieved by miniature aerosol samplers and temperature sensors. The data collected needs to be transmitted in real-time via mobile phones for verification of performance rates.  This is to provide verifiable data in a cost effective monitoring process.

How To Tackle Vibrations Using A Coriolis Mass Flow Meter

Coriolis mass flow meters are acknowledged or well-known as an extremely precise and accurate flow measuring device. Plus, it offers plenty of benefits than other instruments. But take note that every measuring principle has its obstacles, and it is also true for the Coriolis principle.

For the most part, it can be difficult and hard to use Coriolis devices in most low flow applications in industries manufacturing large and heavy products. In these applications, you might have to face all types of vibrations.

Thus, the question is, how can you deal with these vibrations using the coriolis mass flow meter. For a little help, we will walk you through how to deal with all types of vibrations. So, take a read!

Coriolis Principle

This flow measuring device provides multiple benefits and advantages compared to other measuring instruments. First and foremost, coriolis flow meters calculate or gauge direct mass flow.

For many industries, it is a critical feature because it removes or eradicates inaccuracies induced by the fluid’s physical properties or characteristics. Aside from this, coriolis flow meters are extremely precise and accurate, have no mechanical parts in motion, have immense repeatability, a towering dynamic range, and many more.

The coriolis principle is simple yet very effective. Its operating principle is all around us in this world, such as the rotation of the earth and its impact on the weather. Coriolis flow meters have a tube powered by a fixed vibration. So, when a liquid or gas traverses through this tunnel or duct, the mass flow momentum will, more often than not, create a change or alteration in the vibration of the tube.

Then, the duct will contort culminating a phase shift. This shift can be calculated or computed deriving a linear output corresponding to the flow. As the coriolis principle calculates mass flow regardless of what’s inside the tube, it can be, for the most part, promptly implemented to any fluid traversing through it, gas or liquid.

While the thermal mass flow instruments are reliant on the fluid’s physical properties, thus, similar to the phase shift in frequency between outlet and inlet, it’s possible to calculate the actual natural frequency change.

This frequency change is incongruity to the fluid’s density, and it can derive a further signal output. It’s possible to calculate the volume flow rate having computed both the density and the mass flow rate.

How it Works

Coriolis mass flow meters calculate or gauges the mass via inertia. A dense gas or liquid moves or traverse through a tunnel or duct which is pulsated by a small actuator. This vibration generates a measurable contorting force on the duct corresponding to the mass. More advanced models of this flow measuring technology apply dual-curved tunnels for lower pressure drop and higher sensitivity.

Although considered or known as the most precise flow meters, coriolis mass flow meters are prone to errors or inaccuracies when bubbles are existing in the liquid. These bubbles can produce or generate splashing inside the tube, make noise, and modify or alter the energy required for tube vibration. Huge spaces boost the energy required for tube vibration in excess and can end up in complete failure.

Impact of Vibrations on Accuracy of Coriolis Flow Meters

In manufacturing, factory, commercial, business, trade applications, all types of vibrations with various sizes are eminently common. Coriolis mass flow meters calculate a mass flow through a vibrating sensor duct, which variation gets purposely out of phase when the gas or liquid traverses through.

This technique or approach is relatively susceptible to unnecessary vibrations with a recurrence close to the sensor tube’s resonance frequency or a towering concordant of this frequency. However, it depends on the design of the sensor tube.

The odds of the frequency of these unnecessary vibrations is greater than in an industrial environment. Manufacturers of coriolis mass flow meters do their best to minimize the effect of vibrations on the measurement using some technical solutions including pigtails, active and passive vibration compensation, mass inertia, different sensor shapes, dual-sensor tubes, and higher driving frequencies.

In other words, vibrations can affect the accuracy of the measurements of coriolis mass flow meters. However, only if the frequency of the vibrations is close to the concordant frequency.

Types of Vibrations

In industrial applications, vibrations can be produced by usage-based vibration sources, building-based vibration sources, and environmentally related vibration sources. These vibrations move or traverse through a medium such as the fluid itself, through pipes, in the air, or the floor. If any of these vibrations disrupt the frequency of the device, then the output could be incorrect.


It is helpful to determine the sources to lessen or reduce the effects of unwanted vibrations. Oftentimes, it’s possible to move the measuring device or instrument just a little bit, take advantage of huge mass blocks, use suspension alternatives, or use flexible tubes.

About the Author

Sylvia Hopkins is a writer and a blogger who specializes in email marketing campaigns and ghost blogging. She writes about flow measurement instrumentation, flow measurement application, and technology. When not working, Sylvia spends some quality time with her family and friends.

Biomass Conveyors: An Overview

Biomass_ConveyorA well designed biomass conveyor system should take into account the variability of the material and provide the consistent and reliable flow that is crucial to power generation. Depending upon the type of boiler and conversion system, the fuel is either transported directly to the powerhouse via a belt conveyor, or first processed in a chipper/grinder to produce a finer texture. For example, municipal solid waste is deposited into pits where cranes mix the refuse and remove any large, non-combustible items. Sometimes, it is further processed to remove ferrous materials, glass, and other non-combustible materials.

For large pellet-fired biomass system, rail dump method is very common where railway tracks are constructed to transport biomass. Station is specified for train and fuel receiving bins are typically located below the track and rail cars dump into bins, either directly or through a rotary dumper. Fuel received is then transferred by belt conveyors to the biomass storage bins. For small particle size, pneumatic conveying system offer greater flexibility in routing than traditional belt conveyors. Equipment specific to pneumatic systems include positive displacement blowers and rotary feeders that function as air locks.

In a typical biomass thermal power plant, the initial process in the power generation is biomass fuel handling. A railway siding line is taken into the power station and the biomass is delivered in the storage yard. It is then unloaded from the point of delivery by means of wagon tippler. It is rack and pinion type. The biomass is taken from the unloading site to dead storage by belt conveyors. The belt deliver the biomass to warehouse.

The transfer points inside the warehouse are used to transfer biomass to the next belt. The belt elevates the biomass to breaker house. It consists of a rotary machine, which rotates the biomass and separates the light inorganic materials (viz. plastic or other incombustible particles) from it through the action of gravity and transfer it to reject bin house through belt. The belt further elevates the biomass until it reaches the crusher through belt. In the crusher a high-speed 3-phase induction motor is used to crush the biomass according to the requirement, for gasification size range is usually upto 15-20mm, while for biomass-fired boiler, size of 50mm is acceptable. Biomass rises from crusher house and reaches the dead storage.

Cost-effective production of biomass energy is very much dependent on efficient handling of available biomass sources, as well as the efficiency of each process. An important, but often overlooked, area is the efficient receiving of different types and different capacities of biomass as it enters the plant and then conveying this material to the production equipment.  In many cases, the space available for biomass handling is limited.

Receiving equipment can be installed in a pit or at the ground level. The size and volume of the receiving pocket can be suited to vehicle volumes or turn-around times. The receiving pit can be used as small buffer biomass storage or as an emergency or mixing pocket.

Belt conveyors are an economical and reliable choice for transferring biomass over long distances at high capacities with lower noise levels. Designs range from simple, open configurations to totally closed and washable conveyor galleries. Well engineered conveyors have the maximum safe distance between support legs to minimize the cost of civil construction as well as reducing the number of obstructions on the ground.

Chain conveyors are a reliable choice for transporting unscreened or dusty biomass, or when the available space is limited. Screw conveyors are a very economical alternative for transporting biomass over short distances.

Biomass conveyors are an integral feature of all biomass conversion routes

Nowadays, automated conveyor systems are getting traction around the world. Fully automated fuel handling systems employ a biomass storage bin that can hold upto 50 tons (or more) of biomass. The bin is filled by a self-unloading truck with negligible or no onsite staff assistance. From the biomass storage bunker, the fuel is fed automatically to the boiler by augers and conveyors. The fully automated system is a good match for biomass plants where maintenance staff has a large work load and cannot spend much time working with the biomass conversion plant.

Pellet-based hopper systems offer low costs for both installation and operation. In a modern biomass pellet boiler system, fuel is stored in a relatively low-cost grain silo and automatically fed, with no operator intervention, to the boiler or boilers with auger systems similar to those used for conveying feed grain on farms.

The fuel-handling system uses electric motors and is run by automated controls that provide the right amount of fuel to the combustion chamber based on facility demand. Such conveyor systems require minimal maintenance, around 20-30 minutes daily, for ash removal and maintenance of motors and augers, estimated to be about 20-30 minutes per day.

7 Crop Health Metrics That Matter to Farmers

Crop health is of paramount importance to farmers; thus, careful and consistent monitoring of crop health is an absolute must. A recent study on coffee yield losses from 2013 to 2015 revealed that pests and diseases led to high primary (26%) and secondary (38%) yield losses in the researcher’s sampled area. This highlights the significance of closely paying attention to such detrimental factors in your crop’s environment. Doing so will ensure maximum yield and profit for farmers come harvest time.

To look at crop health monitoring as governed by just one or two aspects, however, is a serious mistake. Rather, a holistic approach must be adopted; in other words, more factors need to be monitored than just pestilence and disease.

Here are seven of the most important crop health metrics for farmers to monitor, based on the Sustainable Agriculture Research & Education (SARE) Program’s guidelines.

1) Crop appearance

Perhaps the most obvious indicator of crop health is their general appearance. While not an all-in-one, foolproof method of gauging the current condition of a particular set of crops, a farmer possessing the right tools and knowledge can tell quite a lot from simply looking at the state of his or her plants.

Lightness or discoloration in foliage more often than not points to chlorosis, a state in which plants produce insufficient chlorophyll. Modern methods of crop health monitoring, including new technologies that utilize both near-infrared and visible light, allow farmers to actively and accurately monitor chlorophyll content.

2) Crop growth

Among the indicators of poor crop growth are short branches, sparse stand, and the rarity or absence of new shoots. This, of course, will inevitably affect your total yield in a negative way. Under ideal circumstances, there should be robust growth and dense, uniform stand in your crops.

3) Tolerance or resistance to stress

Simply put, crop stress is a decrease in crop production brought about by external factors. An example would be exposure to excess light and high temperatures, which may disrupt photosynthesis (known as photoinhibition). As a result, crops will have insufficient energy to bear fruit or grow, and may even sustain lasting damage to their membranes, chloroplasts, and cells. Healthy crops are stress-tolerant, and can easily bounce back after being exposed to stressors in their environment.

4) Occurrences of pests and/or diseases

An indicator that your crops are extremely susceptible to pests and diseases would be if over 50% of the population ends up getting damaged by said factors. Under the right circumstances, less than 20% of your crops would be negatively affected by any invasion of pests or spread of disease, allowing them to easily recuperate and increase in number once more.

Building crop resistance against harmful insects and diseases can be done in a number of ways, including improving crop diversity, crop rotation, using organic pesticides such as Himalayan salt spray and eucalyptus oil, and even genetic research and enhancement.

5) Weed competition and pressure

Apart from insects and plant diseases, weeds can also spell doom for your crops, if left unchecked. In the event that your farm becomes overpopulated with weeds that will steal the nutrients from your crops, you will certainly notice that your crops are steadily dwindling. Healthy crops, on the other hand, would eventually overwhelm the weed population and reclaim dominance over your field.

6) Genetic diversity

To have only one dominant variety of crop in your farm is tantamount to putting your eggs in a single basket. For instance, you should consider the importance of having multiple disease-resistant crop varieties on your farm. Don’t fall prey to the temptation of replacing them entirely with a single, higher-yielding type.

It is essential to buil crop resistance against harmful insects and diseases

7) Plant diversity and population

In an ideal setting, there should be more than two species of plants in your field. Counting the actual number of trees or plants across your farm, as well as the naturally occurring vegetation on all sides of the area, can also give you a better perspective on your farm’s overall crop health.

Importance of crop management system

Some farmers become overly reliant on insecticides and other chemicals to eliminate their pest problems — a grievous error, as this will likely lead to even more serious problems. Even the indiscriminate application of mineral fertilizers may inadvertently boost pest populations by making conditions ideal for them to thrive.

Ultimately, a combination of the right knowledge and the proper technology is a must in measuring and monitoring crop health metrics. Farmers must always be aware of the current health of their crops, and must be prepared to address any problems with solutions that don’t end up causing more.

Rice Straw As Bioenergy Resource

The cultivation of rice results in two types of biomass residues – straw and husk – having attractive potential in terms of energy. Rice husk, the main by-product from rice milling, accounts for roughly 22% of paddy weight, while rice straw to paddy ratio ranges from 1.0 to 4.3. Although the technology for rice husk utilization is well-established worldwide, rice straw is sparingly used as a source of renewable energy. One of the main reasons for the preferred use of husk is its easy procurement. In case of rice straw, however, its collection is difficult and its availability is limited to harvest time.

Rice straw can either be used alone or mixed with other biomass materials in direct combustion, whereby combustion boilers are used in combination with steam turbines to produce electricity and heat. The energy content of rice straw is around 14 MJ per kg at 10 percent moisture content.  The by-products are fly ash and bottom ash, which have an economic value and could be used in cement and/or brick manufacturing, construction of roads and embankments, etc.

Straw fuels have proved to be extremely difficult to burn in most combustion furnaces, especially those designed for power generation. The primary issue concerning the use of rice straw and other herbaceous biomass for power generation is fouling, slagging, and corrosion of the boiler due to alkaline and chlorine components in the ash. Europe, and in particular, Denmark, currently has the greatest experience with straw-fired power and CHP plants.

Because of the large amount of cereal grains (wheat and oats) grown in Denmark, the surplus straw plays a large role in the country’s renewable energy strategy. Technology developed includes combustion furnaces, boilers, and superheat concepts purportedly capable of operating with high alkali fuels and having handling systems which minimize fuel preparation.

A variety of methods are employed by the European plants to prepare straw for combustion. Most use automated truck unloading bridge cranes that clamp up to 12 bales at a time and stack them 4-5 bales high in covered storage. Some systems feed whole bales into the boiler. Probably the best known whole bale feeder is the “Vølund cigar feeding” concept, originally applied by Vølund (now Babcock and Wilcox-Vølund). Whole bales are pushed into the combustion chamber and the straw burned off the face of the bale.

However, the newer Danish plants have moved away from whole-bale systems to shredded straw feed for higher efficiency. For pulverized coal co-firing, the straw usually needs to be ground or cut to small sizes in order to burn completely within relatively short residence times (suspension fired systems) or to feed and mix upon injection with bed media in fluidized bed systems.

The chemical composition of feedstock has a major influence on the efficiency of biomass cogeneration. The low feedstock quality of rice straw is primarily determined by high ash content (10–17%) as compared with wheat straw (around 3%) and also high silica content in ash. On the other hand, rice straw as feedstock has the advantage of having a relatively low total alkali content, whereas wheat straw can typically have more than 25% alkali content in ash.

However, straw quality varies substantially within seasons as well as within regions. If straw is exposed to precipitation in the field, alkali and alkaline compounds are leached, improving the feedstock quality. In turn, moisture content should be less than 10% for combustion technology.

In straw combustion at high temperatures, potassium is transformed and combines with other alkali earth materials such as calcium. This in turn reacts with silicates, leading to the formation of tightly sintered structures on the grates and at the furnace wall. Alkali earths are also important in the formation of slag and deposits. This means that fuels with lower alkali content are less problematic when fired in a boiler.

Waste-to-Energy Prospects in the Middle East

wastetoenergy-plant-qatarA combination of high fuel prices and a search for alternative technologies, combined with massive waste generation has led to countries in the Middle East region to consider Waste to Energy (or WtE) as a sustainable waste management strategy and cost-effective fuel source for the future. We look at the current state of the WtE market in the region.

It is estimated that each person in the United Arab Emirates produces 2 kg of municipal solid waste per day – that puts the total waste production figure somewhere in the region of 150 million tonnes every year. Given that the population currently stands at over 9.4 million (2013) and is projected to see an annual average growth figure of 2.3% over the next six years, over three times the global average, it’s clear that this is a lot of waste to be disposed of. In addition, the GCC nations in general rank in the bottom 10% of the sustainable nations in the world and are also amongst the top per capita carbon-releasers.

When we also consider that UAE are actively pursuing alternative energy technologies to supplement rapidly-decreasing and increasingly-costly traditional fossil fuels, mitigate the harmful effects of landfill, and reduce an ever-increasing carbon footprint, it becomes apparent that high on their list of proposed solutions is Waste to Energy (WtE). It could be an ideal solution to the problem.

What is WtE

Waste-to-Energy works on the simple principle of taking waste and turning it into a form of energy. This can be electricity, heat or transport fuels, and can be achieved in a variety of ways – the most common of which is incineration. MSW is taken to a WtE plant, incinerated at high temperatures and the resultant heat is used to boil water which creates steam to turn turbines, in the same way that burning gas or coal produces power. Gasification and anaerobic digestion are two further WtE methods which are also used.

However, WtE has several advantages over burning fossil fuels. Primarily amongst them are the potential to minimise landfill sites which have caused serious concern for many years. They are not only unsightly, but can also be contaminated, biologically or chemically. Toxic waste can leach into the ground beneath them and enter the water table.

Landfill sites also continuously emit carbon dioxide and methane, both harmful greenhouse gases – in addition methane is potentially explosive. Sending MSW to landfill also discourages recycling and necessitates more demand for raw materials. Finally, landfill sites are unpleasant places which attract vermin and flies and give off offensive odours.

WtE has been used successfully in many countries around the world for a long time now. Europe is the most enthusiastic proponent of WtE, with around 450 facilities; the Asia-Pacific region has just over 300; the USA has almost 100. In the rest of the world there are less than 30 facilities but this number is growing. Globally, it is estimated that the WtE industry is growing at approximately US $2 billion per annum and will be valued at around US $80 billion by the year 2022.

The USA ranks third in the world for the percentage of waste which is incinerated for energy production. Around 16% of the rubbish that America produces every day is burned in its WtE plants. Advocates claims the advantages are clear: reducing the amount of greenhouse gas emitted into the environment (estimates say that burning one ton of waste in a WtE plant saves between one half and one ton of greenhouse gases compared to landfill emissions, or the burning of conventional fuels), freeing up land which would normally be used for landfill (and, therefore, extending the life of existing landfill sites), encouraging recycling (some facilities have managed to reduce the amount of waste they process by up to 90% and the recycling of ferrous and non-ferrous metals provides an additional income source), and, perhaps most importantly, producing a revenue stream from the sale of the electricity generated.

In one small county alone, Lancaster, Pennsylvania, with a population of just over half-a-million people, more than 4.4 billion kWh of electricity has been produced through WtE in the last 20 years. This has generated over USD $256 million through its sale to local residents.

WtE in the Middle East

Given WtE’s potential to not only reduce greenhouse gas emissions and pollution on a local scale, but also to produce much-needed electricity in the region, what is the current state of affairs in the Middle East. There are several WtE initiatives already underway in the region. Qatar was the first GCC country to implement a waste-to-energy programme and currently generates over 30MW of electricity from its Domestic Solid Waste Management Center (DSWMC) located at Messeid (Doha). Saudi Arabia and the UAE have both stated that they have WtE production capacity targets of 100MW. Bahrain, Kuwait and Oman are also seriously considering waste-to-energy as a means to tackle the worsening waste management problem.

Abu Dhabi’s government is currently spending around US $850 million to build a 100 MW plant which is expected to be operational by 2017 and which will supply around 20,000 households with electricity. In Sharjah, the world’s largest household waste gasification plant, costing in excess of US $480 million, is due to be open in 2015.

However, not all the GCC members are as enthusiastic about WtE. Dubai’s government has recently scrapped plans for a US $2 billion project which would have made use of the 7,800 tonnes of domestic waste which is produced in Dubai every single day.

We asked Salman Zafar, Founder of Doha-based EcoMENA, a popular sustainability advocacy, why given the sheer scale of the waste in the Gulf region, the production of this form of energy is still in its infancy. “The main deterrent in the implementation of WtE projects in the Middle East is the current availability of cheap sources of energy already available, especially in the GCC,” he commented.

Salman Zafar further says, “WtE projects demand a good deal of investment, heavy government subsidies, tipping fees, power purchase agreements etc, which are hard to obtain for such projects in the region.” “The absence of a sustainable waste management strategy in Middle East nations is also a vital factor behind the very slow pace of growth of the WtE sector in the region. Regional governments, municipalities and local SWM companies find it easier and cost-effective to dump untreated municipal waste in landfills,” he added.

So, how can WtE contribute towards the region’s growing power demand in the future?

“Modern WtE technologies, such as RDF-based incineration, gasification, pyrolysis, anaerobic digestion etc, all have the ability to transform power demand as well as the waste management scenario in the region,” he continued. “A typical 250 – 300 tons per day WtE plant can produce around 3 – 4 MW of electricity and a network of such plants in cities across the region can make a real difference in the energy sector as well as augmenting energy reserves in the Middle East. In fact, WtE plants also produce a tremendous about of heat energy which can be utilised in process industries, further maximising their usefulness,” Salman Zafar concluded.

New technologies naturally take time to become established as their efficiency versus cost ratios are analysed. However, it is becoming increasingly clearer that waste-to-energy is a viable and efficient method for solid waste management and generation of alternative energy in the Middle East.

Use of Big Data in Achieving Sustainable Development Goals

Big data is everywhere, and all sorts of businesses, non-profits, governments and other groups use it to improve their understanding of certain topics and improve their practices. Big data is quite a buzzword, but its definition is relatively straightforward — it refers to any data that is high-volume, gets collected frequently or covers a wide variety of topics. If you want to learn big data and data science then you can take data science courses that are offered by Intellipaat.

This kind of data when organized and analyzed adequately can be quite valuable. Marketing teams use it to learn more about their customer base, healthcare professionals can use it to calculate someone’s chance of contracting a given disease, and cities can use it to optimize traffic flow, and it can also help in saving wildlife.

Big data also has the potential to help significantly improve the quality of life for much of the world’s population. The United Nations, governments, not-for-profits and other groups are using big data to help achieve the UN’s sustainable development goals or SDGs — a set of 17 targets related to protecting the natural environment, reducing inequality, improving health outcomes and other things that will make life better around the world.

How Can We Use Big Data to Achieve SDGs?

There are many ways in which we could use data to improve our understanding of our progress towards the SDGs, determine how best to meet those targets and ensure accountability. The United Nations has set up a task team to explore how to use big data to help achieve the SDGs. A survey by the task team found that big data projects most frequently focused on the “no poverty” goal and that mobile phone data was the most common data source.

Pulse Lab Jakarta, a joint effort between the United Nations and the government of Indonesia, is working on various big data projects related to the SDGs. One of their projects is the Vulnerability Analysis Monitoring Platform for Impact of Regional Events (VAMPIRE) platform, which analyzes satellite imagery and creates maps that incorporate anomalies related to climate and rainfall to help track slow-onset climate changes.

Another project, the Manitoba Bioeconomy Atlas, comes from the International Institute for Sustainable Development and involves that creation of a web-based spatial inventory of biomass sources. Biomass producers can use the data to optimally locate biomass refineries, and biomass consumers can use it to source biomass and calculate costs.

There are many other potential uses for big data related to the SDGs. Mobile phone data, for instance, could be used to track the movement of populations, such as refugees, to improve preparations. Data analysis could help predict changes in food prices. The possibilities are virtually endless.

What Are the Challenges and Risks?

The opportunities related to big data are plentiful, but there are also numerous challenges and risks. Collecting, storing and analyzing large amounts of data is in itself challenging. It requires advanced technology and infrastructure, which can be expensive. This limits the access of less developed countries to this technology. In the survey by the UN’s bid data task team, the team received much higher response rates from high-income countries than lower-income ones.

Privacy is another significant concern. It’s essential that those processing respect the rights of those they collect data from. The fact that much data is collected passively can complicate this. Even removing sensitive information from data sets may not always be enough to guarantee privacy, since people could be identified by combining information from multiple data sets. Those handling personal data need to take steps to protect subjects’ privacy.

The UN, through several of its groups, has issued recommendations and guidelines for the use of big data related to SDGs. Among the goals of these guidelines is ensuring privacy and increasing access to data worldwide. The private and public sectors, as well as countries and organizations from around the world, will have to work together to accomplish the UN’s SDGs and to ensure that we can take full advantage of the benefits big data can provide related to achieving them.