Combined Heat and Power Systems in Biomass Industry

Combined Heat and Power (CHP) is the simultaneous generation of multiple forms of useful energy (usually mechanical and thermal) in a single, integrated system. In conventional electricity generation systems, about 35% of the energy potential contained in the fuel is converted on average into electricity, whilst the rest is lost as waste heat. CHP systems use both electricity and heat and therefore can achieve an efficiency of up to 90%.

CHP technologies are well suited for sustainable development projects because they are socio-economically attractive and technologically mature and reliable. In developing countries, cogeneration can easily be integrated in many industries, especially agriculture and food-processing, taking advantage of the biomass residues of the production process. This has the dual benefits of lowering fuel costs and solving waste disposal issues.

CHP systems consist of a number of individual components—prime mover (heat engine), generator, heat recovery, and electrical interconnection—configured into an integrated whole. Prime movers for CHP units include reciprocating engines, combustion or gas turbines, steam turbines, microturbines, and fuel cells. A typical CHP system provides:

  • Distributed generation of electrical and/or mechanical power.
  • Waste-heat recovery for heating, cooling, or process applications.
  • Seamless system integration for a variety of technologies, thermal applications, and fuel types.

The success of any biomass-fuelled CHP project is heavily dependent on the availability of a suitable biomass feedstock freely available in urban and rural areas.

Rural Resources Urban Resources
Forest residues Urban wood waste
Wood wastes Municipal solid wastes
Crop residues Agro-industrial wastes
Energy crops Food processing residues
Animal manure Sewage

Technology Options

Reciprocating or internal combustion engines (ICEs) are among the most widely used prime movers to power small electricity generators. Advantages include large variations in the size range available, fast start-up, good efficiencies under partial load efficiency, reliability, and long life.

Steam turbines are the most commonly employed prime movers for large power outputs. Steam at lower pressure is extracted from the steam turbine and used directly or is converted to other forms of thermal energy. System efficiencies can vary between 15 and 35% depending on the steam parameters.

Co-firing of biomass with coal and other fossil fuels can provide a short-term, low-risk, low-cost option for producing renewable energy while simultaneously reducing the use of fossil fuels. Biomass can typically provide between 3 and 15 percent of the input energy into the power plant. Most forms of biomass are suitable for co-firing.

Steam engines are also proven technology but suited mainly for constant speed operation in industrial environments. Steam engines are available in different sizes ranging from a few kW to more than 1 MWe.

A gas turbine system requires landfill gas, biogas, or a biomass gasifier to produce the gas for the turbine. This biogas must be carefully filtered of particulate matter to avoid damaging the blades of the gas turbine.  

Stirling engines utilize any source of heat provided that it is of sufficiently high temperature. A wide variety of heat sources can be used but the Stirling engine is particularly well-suited to biomass fuels. Stirling engines are available in the 0.5 to 150 kWe range and a number of companies are working on its further development.

A micro-turbine recovers part of the exhaust heat for preheating the combustion air and hence increases overall efficiency to around 20-30%. Several competing manufacturers are developing units in the 25-250kWe range. Advantages of micro-turbines include compact and light weight design, a fairly wide size range due to modularity, and low noise levels.

Fuel cells are electrochemical devices in which hydrogen-rich fuel produces heat and power. Hydrogen can be produced from a wide range of renewable and non-renewable sources. A future high temperature fuel cell burning biomass might be able to achieve greater than 50% efficiency.

Biomass Energy in Thailand

Thailand’s annual energy consumption has risen sharply during the past decade and will continue its upward trend in the years to come. While energy demand has risen sharply, domestic sources of supply are limited, thus forcing a significant reliance on imports.

To face this increasing demand, Thailand needs to produce more energy from its own renewable resources, particularly biomass wastes derived from agro-industry, such as bagasse, rice husk, wood chips, livestock and municipal wastes.

In 2005, total installed power capacity in Thailand was 26,430 MW. Renewable energy accounted for about 2 percent of the total installed capacity. In 2007, Thailand had about 777 MW of electricity from renewable energy that was sold to the grid.

Several studies have projected that biomass wastes can cover up to 15 % of the energy demand in Thailand. These estimations are primarily made from biomass waste from the extraction part of agricultural activities, and for large scale agricultural processing of crops etc. – as for instance saw and palm oil mills – and do not include biomass wastes from SMEs in Thailand. Thus, the energy potential of biomass waste can be much larger if these resources are included. The major biomass resources in Thailand include the following:

  • Woody biomass residues from forest plantations
  • Agricultural residues (rice husk, bagasse, corn cobs, etc.)
  • Wood residues from wood and furniture industries    (bark, sawdust, etc.)
  • Biomass for ethanol production (cassava, sugar cane, etc.)
  • Biomass for biodiesel production (palm oil, jatropha oil, etc.)
  • Industrial wastewater from agro-industry
  • Livestock manure
  • Municipal solid wastes and sewage

Thailand’s vast biomass potential has been partially exploited through the use of traditional as well as more advanced conversion technologies for biogas, power generation, and biofuels. Rice, sugar, palm oil, and wood-related industries are the major potential biomass energy sources. The country has a fairly large biomass resource base of about 60 million tons generated each year that could be utilized for energy purposes, such as rice, sugarcane, rubber sheets, palm oil and cassava.

Biomass has been a primary source of energy for many years, used for domestic heating and industrial cogeneration. For example, paddy husks are burned to produce steam for turbine operation in rice mills; bagasse and palm residues are used to produce steam and electricity for on-site manufacturing process; and rubber wood chips are burned to produce hot air for rubber wood seasoning.

In addition to biomass residues, wastewater containing organic matters from livestock farms and industries has increasingly been used as a potential source of biomass energy. Thailand’s primary biogas sources are pig farms and residues from food processing. The production potential of biogas from industrial wastewater from palm oil industries, tapioca starch industries, food processing industries, and slaughter industries is also significant. The energy-recovery and environmental benefits that the KWTE waste to energy project has already delivered is attracting keen interest from a wide range of food processing industries around the world.

Biomass Resources from Rice Industry

The cultivation of rice results in two major types of residues – Straw and Husk –having attractive potential in terms of energy. Although the technology for rice husk utilization is well-proven in industrialized countries of Europe and North America, such technologies are yet to be introduced in the developing world on commercial scale. The importance of Rice Husk and Rice Straw as an attractive source of energy can be gauged from the following statistics:

Rice Straw

  • 1 ton of Rice paddy produces 290 kg Rice Straw
  • 290 kg Rice Straw can produce 100 kWh of power
  • Calorific value = 2400 kcal/kg

Rice Husk

  • 1 ton of Rice paddy produces 220 kg Rice Husk
  • 1 ton Rice Husk is equivalent to 410- 570 kWh electricity
  • Calorific value = 3000 kcal/kg
  • Moisture content = 5 – 12%

Rice husk is the most prolific agricultural residue in rice producing countries around the world. It is one of the major by-products from the rice milling process and constitutes about 20% of paddy by weight. Rice husk, which consists mainly of lingo-cellulose and silica, is not utilized to any significant extent and has great potential as an energy source.

Rice husk can be used for power generation through either the steam or gasification route. For small scale power generation, the gasification route has attracted more attention as a small steam power plant is very inefficient and is very difficult to maintain due to the presence of a boiler. In addition for rice mills with diesel engines, the gas produced from rice husk can be used in the existing engine in a dual fuel operation.

The benefits of using rice husk technology are numerous. Primarily, it provides electricity and serves as a way to dispose of agricultural waste. In addition, steam, a byproduct of power generation, can be used for paddy drying applications, thereby increasing local incomes and reducing the need to import fossil fuels. Rice husk ash, the byproduct of rice husk power plants, can be used in the cement and steel industries further decreasing the need to import these materials.

Rice straw can either be used alone or mixed with other biomass materials in direct combustion. In this technology, combustion boilers are used in combination with steam turbines to produce electricity and heat. The energy content of rice straw is around 14 MJ per kg at 10 percent moisture content.  The by-products are fly ash and bottom ash, which have an economic value and could be used in cement and/or brick manufacturing, construction of roads and embankments, etc.

Straw fuels have proved to be extremely difficult to burn in most combustion furnaces, especially those designed for power generation. The primary issue concerning the use of rice straw and other herbaceous biomass for power generation is fouling, slagging, and corrosion of the boiler due to alkaline and chlorine components in the ash. Europe, and in particular, Denmark, currently has the greatest experience with straw fired power and CHP plants.

Trends in Utilization of Biogas

The valuable component of biogas is methane (CH4) which typically makes up 60%, with the balance being carbon dioxide (CO2) and small percentages of other gases. The proportion of methane depends on the feedstock and the efficiency of the process, with the range for methane content being 40% to 70%. Biogas is saturated and contains H2S, and the simplest use is in a boiler to produce hot water or steam.

The most common use is where the biogas fuels an internal combustion gas engine in a Combined Heat and Power (CHP) unit to produce electricity and heat. In Sweden the compressed gas is used as a vehicle fuel and there are a number of biogas filling stations for cars and buses. The gas can also be upgraded and used in gas supply networks. The use of biogas in solid oxide fuel cells is also being researched.

Biogas can be combusted directly to produce heat. In this case, there is no need to scrub the hydrogen sulphide in the biogas. Usually the process utilize dual-fuel burner and the conversion efficiency is 80 to 90%. The main components of the system are anaerobic digester, biogas holder, pressure switch, booster fan, solenoid valve, dual fuel burner and combustion air blower.

The most common method for utilization of biogas in developing countries is for cooking and lighting. Conventional gas burners and gas lamps can easily be adjusted to biogas by changing the air to gas ratio. In more industrialized countries boilers are present only in a small number of plants where biogas is used as fuel only without additional CHP. In a number of industrial applications biogas is used for steam production.

Burning biogas in a boiler is an established and reliable technology. Low demands are set on the biogas quality for this application. Pressure usually has to be around 8 to 25 mbar. Furthermore it is recommended to reduce the level of hydrogen sulphide to below 1 000 ppm, this allows to maintain the dew point around 150 °C.

CHP Applications

Biogas is the ideal fuel for generation of electric power or combined heat and power. A number of different technologies are available and applied. The most common technology for power generation is internal combustion. Engines are available in sizes from a few kilowatts up to several megawatts. Gas engines can either be SI-engines (spark ignition) or dual fuel engines. Dual fuel engines with injection of diesel (10% and up) or sometimes plant oil are very popular in smaller scales because they have good electric efficiencies up to guaranteed 43%.

The biogas pressure is turbo-charged and after-cooled and has a high compression ratio in the gas engines. The cooling tower provides cooling water for the gas engines. The main component of the system required for utilizing the technology are anaerobic digester, moisture remover, flame arrester, waste gas burner, scrubber, compressor, storage, receiver, regulator, pressure switch and switch board.

Gas turbines are an established technology in sizes above 500 kW. In recent years also small scale engines, so called micro-turbines in the range of 25 to 100kW have been successfully introduced in biogas applications. They have efficiencies comparable to small SI-engines with low emissions and allow recovery of low pressure steam which is interesting for industrial applications. Micro turbines are small, high-speed, integrated power plants that include a turbine, compressor, generator and power electronics to produce power.

New Trends

The benefit of the anaerobic treatment will depend on the improvement of the process regarding a higher biogas yield per m3 of biomass and an increase in the degree of degradation. Furthermore, the benefit of the process can be multiplied by the conversion of the effluent from the process into a valuable product. In order to improve the economical benefit of biogas production, the future trend will go to integrated concepts of different conversion processes, where biogas production will still be a significant part. In a so-called biorefinery concept, close to 100% of the biomass is converted into energy or valuable by-products, making the whole concept more economically profitable and increasing the value in terms of sustainability.

Typical layout of a modern biogas facility

One example of such biorefinery concept is the Danish Bioethanol Concept that combines the production of bioethanol from lignocellulosic biomass with biogas production of the residue stream. Another example is the combination of biogas production from manure with manure separation into a liquid and a solid fraction for separation of nutrients. One of the most promising concepts is the treatment of the liquid fraction on the farm-site in a UASB reactor while the solid fraction is transported to the centralized biogas plant where wet-oxidation can be implemented to increase the biogas yield of the fiber fraction. Integration of the wet oxidation pre-treatment of the solid fraction leads to a high degradation efficiency of the lignocellulosic solid fraction.

Biomass Energy in Vietnam

Vietnam is one of the few countries having a low level of energy consumption in the developing world with an estimated amount of 210 kg of oil equivalent per capita/year. Over half of the Vietnamese population does not have access to electricity. Vietnam is facing the difficult challenge of maintaining this growth in a sustainable manner, with no or minimal adverse impacts on society and the environment.

Being an agricultural country, Vietnam has very good biomass energy potential. Agricultural wastes are most abundant in the Mekong Delta region with approximately 50% of the amount of the whole country and Red River Delta with 15%. Major biomass resources includes rice husk from paddy milling stations, bagasse from sugar factories, coffee husk from coffee processing plants in the Central Highlands and wood chip from wood processing industries. Vietnam has set a target of having a combined capacity of 500 MW of biomass power by 2020, which is raised to 2,000 MW in 2030.

Rice husk and bagasse are the biomass resources with the greatest economic potential, estimated at 50 MW and 150 MW respectively. Biomass fuels sources that can also be developed include forest wood, rubber wood, logging residues, saw mill residues, sugar cane residues, bagasse, coffee husk and coconut residues. Currently biomass is generally treated as a non-commercial energy source, and collected and used locally. Nearly 40 bagasse-based biomass power plants have been developed with a total designed capacity of 150 MW but they are still unable to connect with the national grid due to current low power prices. Five cogeneration systems selling extra electricity to national grid at average price of 4UScents/kWh.

Biogas energy potential is approximately 10 billion m3/year, which can be collected from landfills, animal excrements, agricultural residues, industrial wastewater etc. The biogas potential in the country is large due to livestock population of more than 30 million, mostly pigs, cattle, and water buffalo. Although most livestock dung already is used in feeding fish and fertilizing fields and gardens, there is potential for higher-value utilization through biogas production. It is estimated that more than 25,000 household biogas digesters with 1 to 50 m3, have been installed in rural areas. The Dutch-funded Biogas Program operated by SNV Vietnam constructed some 18,000 biogas facilities in 12 provinces between 2003 and 2005, with a second phase (2007-2010) target of 150,000 biogas tanks in both rural and semi-urban settings.

Municipal solid waste is also a good biomass resource as the amount of solid waste generated in Vietnam has been increasing steadily over the last few decades. In 1996, the average amount of waste produced per year was 5.9 million tons per annum which rose to 28 million tons per in 2008 and expected to reach 44 million tons per year by 2015.