About Salman Zafar

Salman Zafar is the CEO of BioEnergy Consult, and an international consultant, advisor and trainer with expertise in waste management, biomass energy, waste-to-energy, environment protection and resource conservation. His geographical areas of focus include Asia, Africa and the Middle East. Salman has successfully accomplished a wide range of projects in the areas of biogas technology, biomass energy, waste-to-energy, recycling and waste management. Salman has participated in numerous national and international conferences all over the world. He is a prolific environmental journalist, and has authored more than 300 articles in reputed journals, magazines and websites. In addition, he is proactively engaged in creating mass awareness on renewable energy, waste management and environmental sustainability through his blogs and portals. Salman can be reached at salman@bioenergyconsult.com or salman@cleantechloops.com.

Biomass Energy Scenario in Southeast Asia

The rapid economic growth and industrialization in Southeast Asian region is characterized by a significant gap between energy supply and demand. The energy demand in the region is expected to grow rapidly in the coming years which will have a profound impact on the global energy market. In addition, the region has many locations with high population density, which makes public health vulnerable to the pollution caused by fossil fuels.

Another important rationale for transition from fossil-fuel-based energy systems to renewable ones arises out of observed and projected impacts of climate change. Due to the rising share of greenhouse gas emissions from Asia, it is imperative on all Asian countries to promote sustainable energy to significantly reduce GHGs emissions and foster sustainable energy trends. Rising proportion of greenhouse gas emissions is causing large-scale ecological degradation, particularly in coastal and forest ecosystems, which may further deteriorate environmental sustainability in the region.

The reliance on conventional energy sources can be substantially reduced as the Southeast Asian region is one of the leading producers of biomass resources in the world. Southeast Asia, with its abundant biomass resources, holds a strategic position in the global biomass energy atlas.

There is immense potential of biomass energy in ASEAN countries due to plentiful supply of diverse forms of wastes such as agricultural residues, agro-industrial wastes, woody biomass, animal wastes, municipal solid waste, etc. Southeast Asia is a big producer of wood and agricultural products which, when processed in industries, produces large amounts of biomass residues.

palm-kernel-shell-uses

Palm kernel shells is an abundant biomass resource in Southeast Asia

According to conservative estimates, the amount of biomass residues generated from sugar, rice and palm oil mills is more than 200-230 million tons per year which corresponds to cogeneration potential of 16-19 GW. Woody biomass is a good energy resource due to presence of large number of forests and wood processing industries in the region.

The prospects of biogas power generation are also high in the region due to the presence of well-established food processing, agricultural and dairy industries. Another important biomass resource is contributed by municipal solid wastes in heavily populated urban areas.

In addition, there are increasing efforts from the public and private sectors to develop biomass energy systems for efficient biofuel production, e.g. biodiesel and bioethanol. The rapid economic growth and industrialization in Southeast Asia has accelerated the drive to implement the latest biomass energy technologies in order to tap the unharnessed potential of biomass resources, thereby making a significant contribution to the regional energy mix.

Bioenergy Perspectives for Southeast Asia

Southeast Asia, with its abundant bioenergy resources, holds a strategic position in the global biomass energy atlas. There is immense bioenergy potential in Southeast Asian countries due to plentiful supply of diverse forms of biomass wastes such as agricultural residues, woody biomass, animal wastes, municipal solid waste, etc. The rapid economic growth and industrialization in the region has accelerated the drive to implement the latest waste-to-energy technologies to tap the unharnessed potential of biomass resources.

Southeast Asia is a big producer of agricultural and wood products which, when processed in industries, produces large amounts of biomass residues. According to conservative estimates, the amount of biomass residues generated from sugar, rice and palm oil mills is more than 200-230 million tons per year which corresponds to cogeneration potential of 16-19 GW.

Rice mills in the region produce 38 million tonnes of rice husk as solid residue which is a good fuel for producing heat and power. Sugar industry is an integral part of the industrial scenario in Southeast Asia accounting for 7% of sugar production worldwide. Sugar mills in Thailand, Indonesia, Philippines and Vietnam generate 34 million tonnes of bagasse every year.  Malaysia, Indonesia and Thailand account for 90% of global palm oil production leading to the generation of 27 million tonnes of waste per annum in the form of empty fruit bunches (EFBs), fibers and shells, as well as liquid effluent.

Woody biomass is a good energy resource due to presence of large number of forests in Southeast Asia. Apart from natural forests, non-industrial plantations of different types (e.g. coconut, rubber and oil palm plantations, fruit orchards, and trees in homesteads and gardens) have gained recognition as important sources of biomass. In addition, the presence of a large number of wood processing industries also generates significant quantity of wood wastes. The annual production of wood wastes in the region is estimated to be more than 30 million m3.

The prospects of biogas power generation are also high in the region thanks to presence of well-established food-processing and dairy industries. Another important biomass resource is contributed by municipal solid wastes in heavily populated urban areas.  In addition, there are increasing efforts both commercially and promoted by governments to develop biomass energy systems for efficient biofuel production, e.g. bio-diesel from palm oil.

Biomass resources, particularly residues from forests, wood processing, agricultural crops and agro-processing, are under-utilised in Southeast Asian countries. There is an urgent need to utilize biomass wastes for commercial electricity and heat production to cater to the needs of the industries as well as urban and rural communities.

Southeast Asian countries are yet to make optimum use of the additional power generation potential from biomass waste resources which could help them to partially overcome the long-term problem of energy supply. Technologies for biomass utilization which are at present widely used in Southeast counties need to be improved towards best practice by making use of the latest trends in the biomass energy sector.

Food Waste Management

The waste management hierarchy suggests that reduce, reuse and recycling should always be given preference in a typical waste management system. However, these options cannot be applied uniformly for all kinds of wastes. For examples, food waste is quite difficult to deal with using the conventional 3R strategy.

Of the different types of organic wastes available, food waste holds the highest potential in terms of economic exploitation as it contains high amount of carbon and can be efficiently converted into biogas and organic fertilizer.

There are numerous places which are the sources of large amounts of food waste and hence a proper food waste management strategy needs to be devised for them to make sure that either they are disposed off in a safe manner or utilized efficiently. These places include hotels, restaurants, malls, residential societies, college/school/office canteens, religious mass cooking places, communal kitchens, airline caterers, food and meat processing industries and vegetable markets which generate food residuals of considerable quantum on a daily basis.

anaerobic_digestion_plant

The anaerobic digestion technology is highly apt in dealing with the chronic problem of food waste management in urban societies. Although the technology is commercially viable in the longer run, the high initial capital cost is a major hurdle towards its proliferation.

The onus is on the governments to create awareness and promote such technologies in a sustainable manner. At the same time, entrepreneurs, non-governmental organizations and environmental agencies should also take inspiration from successful food waste-to-energy projects in Western countries and try to set up such facilities in cities and towns.

How Modern Technology is Transforming Urban Development

Australia is famous the whole world over for its incredible scenery and stunning countryside, from the arid yet beautiful outback to the shimmering sands of the Gold Coast, but the country is also home to some of the world’s favourite cities. Australia’s population is growing, and so urban development and planning is becoming ever more important. The way we plan, design and build our urban centres has changed rapidly over the last decades thanks to evolving needs, environmental concerns and rapidly advancing technology.

It is this combination that is helping Australian towns and cities lead the way when it comes to urban generation and regeneration.

More Accurate Surveying

Thorough surveying is the key to successful development, and it was once a laborious and time-consuming process, and therefore by necessity, an expensive one too. One modern invention has transformed this task completely, as the most forward thinking planners now utilise unmanned aerial surveying techniques.

Using the latest high-powered drones, planners and developers can now get a much more accurate and holistic picture of the land that they plan to build on. The highly detailed maps produced from the air allow clients to make more informed decisions quicker than they would otherwise have been able to, thus helping to ensure that projects come in on time and on budget.

Greener Developments

Many Australians are becoming increasingly concerned about the effect that mankind is having upon the environment, and the effects of climate change can be seen across this nation and beyond. That’s why surveyors and designers have to be very careful when planning urban developments, as it’s imperative that expanding urban centres don’t adversely impact upon our ecology or the incredible animal life that also calls Australia its home.

Today’s leading urban surveying companies put green issues at the heart of the work, using the latest computer modelling techniques to thoroughly assess the impact of an urban development upon the environment surrounding it; in this way, it’s possible to maintain the equilibrium between the need to develop new urban spaces and the need to protect our ecosystems.

Bringing Greater Benefits to Urban Dwellers

There are many factors to be considered when planning an urban development, as well as the green concerns mentioned above. It’s essential for planners to be able to make accurate assessments of what benefits their development will bring to the people who live within it and upon its neighbourhood, and this involves careful study of a wide range of metrics and projections.

The highly detailed maps produced from the air allow clients to make more informed decisions quicker

Whilst this remains a specialist and highly important job, the appearance of specialist computer programmes now allow planners to make an economic and demographic assessment that’s more accurate than ever before.

Expert urban planners know how essential it is to use all of the technological innovations now available to them, from unmanned aerial surveying, to high tech demographic assessment tools and greener planning software. This is why new urban developments bring benefits for residents and businesses, and for the economy as a whole, while still protecting the rural areas and environment that make Australia the envy of the world.

Dyne Testing and its Usefulness

Dyne Testing is a technology, a method to measure surface wettability. The low surface wettability of polymer-based substrates is the sign of poor adhesion of inks, glues and coatings. Thus, to obtain the optimum amount of adhesive it is necessary to increase the surface energy of the substrate which can be done by surface treatment with either Corona or Plasma. It will result in good wetting of the material over the surface of the substrate and hence, it improves adhesion.

For the optimum adhesion, while printing, gluing, or coating the various substrates, it is necessary to obtain high surface energy which can be obtained by Dyne Testing Markers. The fluid that is present in the Dyne Testing markers is based on ISO 8296 method for measuring the surface energy of polythene film.

When the Dyne Testing Pens are being applied to the surface, the liquid will form a continues film or will form a small trail of droplets. If it is being stretched as a film for at least 3 seconds, the substrate will have a minimum surface energy of that ink value which will be expressed in mN/m (Dynes).

The exact surface energy (Dyne level) can be determined by applying a range of increasing or decreasing values of Dyne test pens thereby taking the steps to improve its condition.

The Dyne Test Pen may lose its accuracy for which there are 3 reasons:

  1. It could get contaminated with the foreign substance
  2. It could evaporate quicker than it is expected to be
  3. And the third reason is ageing, during which chemical reactions take place among the constituents.

The experts have also faced the problem with the ageing of Dyne Testing Equipment. If their hue or color density are almost past their expiration date, it is advisable to replace them as stated by experts. The lower Dyne value states that the value stated on the bottle does not match true surface tension. You must be sure that retains the substrate used for the measurements are to be kept well sealed, free from contamination, and stored under laboratory conditions.

The ideal Dyne Testing Pen should be:

  • easy to handle,
  • perfect for the quick spot checks on the production floor,
  • very easy to read,
  • no subjectivity for this type of test,
  • no wiping off necessary,
  • lasting display of result, and
  • very striking coloring.

Conclusion

The Dyne Testing Kit by Ice-equipment.com is based on valve tip applicator and not the magic marker type. The quick test 38 pen is our most popular product amongst all and it is available in a bright red ink. This is the quick test pen which serves to check the surface treatment of all plastic substrates.

It has a shown an effect onto the material such that a stroke of the pens leaves a full line on the material if the material’s surface energy is below 38 Dynes/cm. Also, as mentioned above if the materials surface energy is below 38 Dynes/cm, the fluid will form small drops on the surface. The fluid applied to the surface will dry within seconds; it does not need to be wiped off anymore.

Trends in Utilization of Palm Kernel Shells

palm-kernel-shell-usesThe palm kernel shells used to be initially dumped in the open thereby impacting the environment negatively without any economic benefit. However, over time, palm oil mills in Southeast Asia and elsewhere realized their brilliant properties as a fuel and that they can easily replace coal as an industrial fuel for generating heat and steam.

Major Applications

Nowadays, the primary use of palm kernel shells (PKS) is as a boiler fuel supplementing the fibre which is used as primary fuel. In recent years kernel shells are extensively sold as alternative fuel around the world. Besides selling shells in bulk, there are companies that produce fuel briquettes from shells which may include partial carbonisation of the material to improve the combustion characteristics.

Palm kernel shells have a high dry matter content (>80% dry matter). Therefore the shells are generally considered a good fuel for the boilers as it generates low ash amounts and the low K and Cl content will lead to less ash agglomeration. These properties are also ideal for production of biomass for export.

As a raw material for fuel briquettes, palm shells are reported to have the same calorific characteristics as coconut shells. The relatively smaller size makes it easier to carbonise for mass production, and its resulting palm shell charcoal can be pressed into a heat efficient biomass briquette.

Although the literature on using oil palm shells (and fibres) is not as extensive as EFB, common research directions of using shells, besides energy, are to use it as raw material for light-weight concrete, fillers, activated carbon, and other materials. However, none of the applications are currently done on a large-scale. Since shells are dry and suitable for thermal conversion, technologies that further improve the combustion characteristics and increase the energy density, such as torrefaction, could be relevant for oil palm shells.

Torrefaction is a pretreatment process which serves to improve the properties of biomass in relation to the thermochemical conversion technologies for more efficient energy generation. High lignin content for shells affects torrefaction characteristics positively (as the material is not easily degraded compared to EFB and fibres).

Furthermore, palm oil shells are studied as feedstock for fast pyrolysis. To what extent shells are a source of fermentable sugars is still not known, however the high lignin content in palm kernel shells indicates that shells are less suitable as raw material for fermentation.

Future Outlook

The leading palm oil producers in the world should consider limiting the export of palm-kernel shells (PKS) to ensure supplies of the biomass material for renewable energy projects, in order to decrease dependency on fossil fuels. For example, many developers in Indonesia have expressed an interest in building palm kernel shell-fired power plants. However, they have their concerns over supplies, as many producers prefer to sell their shells overseas currently. Many existing plants are facing problems on account of inconsistent fuel quality and increasing competition from overseas PKS buyers. PKS market is well-established in provinces like Sumatra and export volumes to Europe and North Asia as a primary fuel for biomass power plants is steadily increasing.

The creation of a biomass supply chain in palm oil producing countries may be instrumental in discouraging palm mills to sell their PKS stocks to brokers for export to foreign countries. Establishment of a biomass exchange in leading countries, like Indonesia, Malaysia and Nigeria, will also be a deciding factor in tapping the unharnessed potential of palm kernel shells as biomass resource.

Bioenergy in the Middle East

The Middle East region offers tremendous renewable energy potential in the form of solar, wind and bioenergy which has remained unexplored to a great extent. The major biomass producing Middle East countries are Egypt, Algeria, Yemen, Iraq, Syria and Jordan. Traditionally, biomass energy has been widely used in rural areas for domestic purposes in the Middle East. Since most of the region is arid/semi-arid, the biomass energy potential is mainly contributed by municipal solid wastes, agricultural residues and agro-industrial wastes.

Municipal solid wastes represent the best bioenergy resource in the Middle East. The high rate of population growth, urbanization and economic expansion in the region is not only accelerating consumption rates but also accelerating the generation of municipal waste. Bahrain, Saudi Arabia, UAE, Qatar and Kuwait rank in the top-ten worldwide in terms of per capita solid waste generation. The gross urban waste generation quantity from Middle East countries is estimated at more than 150 million tons annually.

In Middle East countries, huge quantity of sewage sludge is produced on daily basis which presents a serious problem due to its high treatment costs and risk to environment and human health. On an average, the rate of wastewater generation is 80-200 litres per person each day and sewage output is rising by 25 percent every year. According to estimates from the Drainage and Irrigation Department of Dubai Municipality, sewage generation in the Dubai increased from 50,000 m3 per day in 1981 to 400,000 m3 per day in 2006.

The food processing industry in Middle East produces a large number of organic residues and by-products that can be used as source of bioenergy. In recent decades, the fast-growing food and beverage processing industry has remarkably increased in importance in major countries of the Middle East.

Since the early 1990s, the increased agricultural output stimulated an increase in fruit and vegetable canning as well as juice, beverage, and oil processing in countries like Egypt, Syria, Lebanon and Saudi Arabia. There are many technologically-advanced dairy products, bakery and oil processing plants in the region.

date-wastes

Date palm biomass is found in large quantities across the Middle East

Agriculture plays an important role in the economies of most of the countries in the Middle East.  The contribution of the agricultural sector to the overall economy varies significantly among countries in the region, ranging, for example, from about 3.2 percent in Saudi Arabia to 13.4 percent in Egypt. Cotton, dates, olives, wheat are some of the prominent crops in the Middle East

Large quantities of crop residues are produced annually in the region, and are vastly underutilised. Current farming practice is usually to plough these residues back into the soil, or they are burnt, left to decompose, or grazed by cattle. These residues could be processed into liquid fuels or thermochemically processed to produce electricity and heat in rural areas.

Energy crops, such as Jatropha, can be successfully grown in arid regions for biodiesel production. Infact, Jatropha is already grown at limited scale in some Middle East countries and tremendous potential exists for its commercial exploitation.

The Middle Eastern countries have strong animal population. The livestock sector, in particular sheep, goats and camels, plays an important role in the national economy of the Middle East countries. Many millions of live ruminants are imported into the Middle Eastern countries each year from around the world. In addition, the region has witnessed very rapid growth in the poultry sector. The biogas potential of animal manure can be harnessed both at small- and community-scale.

Biodiesel Program in India – An Analysis

The Government of India approved the National Policy on Biofuels in December 2009. The biofuel policy encouraged the use of renewable energy resources as alternate fuels to supplement transport fuels (petrol and diesel for vehicles) and proposed a target of 20 percent biofuel blending (both biodiesel and bioethanol) by 2017. The government launched the National Biodiesel Mission (NBM) identifying Jatropha curcas as the most suitable tree-borne oilseed for biodiesel production.

The Planning Commission of India had set an ambitious target covering 11.2 to 13.4 million hectares of land under Jatropha cultivation by the end of the 11th Five-Year Plan. The central government and several state governments are providing fiscal incentives for supporting plantations of Jatropha and other non-edible oilseeds. Several public institutions, state biofuel boards, state agricultural universities and cooperative sectors are also supporting the biofuel mission in different capacities.

State of the Affairs

The biodiesel industry in India is still in infancy despite the fact that demand for diesel is five times higher than that for petrol. The government’s ambitious plan of producing sufficient biodiesel to meet its mandate of 20 percent diesel blending by 2012 was not realized due to a lack of sufficient Jatropha seeds to produce biodiesel.

Currently, Jatropha occupies only around 0.5 million hectares of low-quality wastelands across the country, of which 65-70 percent are new plantations of less than three years. Several corporations, petroleum companies and private companies have entered into a memorandum of understanding with state governments to establish and promote Jatropha plantations on government-owned wastelands or contract farming with small and medium farmers. However, only a few states have been able to actively promote Jatropha plantations despite government incentives.

Key Hurdles

The unavailability of sufficient feedstock and lack of R&D to evolve high-yielding drought tolerant Jatropha seeds have been major stumbling blocks. In addition, smaller land holdings, ownership issues with government or community-owned wastelands, lackluster progress by state governments and negligible commercial production of biodiesel have hampered the efforts and investments made by both private and public sector companies.

The non-availability of sufficient feedstock and lack of R&D to evolve high-yielding drought tolerant Jatropha seeds have been major stumbling blocks in biodiesel program in India. In addition, smaller land holdings, ownership issues with government or community-owned wastelands, lackluster progress by state governments and negligible commercial production of biodiesel have hampered the efforts and investments made by both private and public sector companies.

Another major obstacle in implementing the biodiesel programme has been the difficulty in initiating large-scale cultivation of Jatropha. The Jatropha production program was started without any planned varietal improvement program, and use of low-yielding cultivars made things difficult for smallholders. The higher gestation period of biodiesel crops (3–5 years for Jatropha and 6–8 years for Pongamia) results in a longer payback period and creates additional problems for farmers where state support is not readily available.

The Jatropha seed distribution channels are currently underdeveloped as sufficient numbers of processing industries are not operating. There are no specific markets for Jatropha seed supply and hence the middlemen play a major role in taking the seeds to the processing centres and this inflates the marketing margin.

Biodiesel distribution channels are virtually non-existent as most of the biofuel produced is used either by the producing companies for self-use or by certain transport companies on a trial basis. Further, the cost of biodiesel depends substantially on the cost of seeds and the economy of scale at which the processing plant is operating.

The lack of assured supplies of feedstock supply has hampered efforts by the private sector to set up biodiesel plants in India. In the absence of seed collection and oil extraction infrastructure, it becomes difficult to persuade entrepreneurs to install trans-esterification plants.

Biomass Pyrolysis Process

Pyrolysis is the thermal decomposition of biomass occurring in the absence of oxygen. It is the fundamental chemical reaction that is the precursor of both the combustion and gasification processes and occurs naturally in the first two seconds. The products of biomass pyrolysis include biochar, bio-oil and gases including methane, hydrogen, carbon monoxide, and carbon dioxide.

Depending on the thermal environment and the final temperature, pyrolysis will yield mainly biochar at low temperatures, less than 450 0C, when the heating rate is quite slow, and mainly gases at high temperatures, greater than 800 0C, with rapid heating rates. At an intermediate temperature and under relatively high heating rates, the main product is bio-oil.

Pyrolysis can be performed at relatively small scale and at remote locations which enhance energy density of the biomass resource and reduce transport and handling costs.  Pyrolysis offers a flexible and attractive way of converting solid biomass into an easily stored and transported liquid, which can be successfully used for the production of heat, power and chemicals.

A wide range of biomass feedstocks can be used in pyrolysis processes. The pyrolysis process is very dependent on the moisture content of the feedstock, which should be around 10%. At higher moisture contents, high levels of water are produced and at lower levels there is a risk that the process only produces dust instead of oil. High-moisture waste streams, such as sludge and meat processing wastes, require drying before subjecting to pyrolysis.

The efficiency and nature of the pyrolysis process is dependent on the particle size of feedstocks. Most of the pyrolysis technologies can only process small particles to a maximum of 2 mm keeping in view the need for rapid heat transfer through the particle. The demand for small particle size means that the feedstock has to be size-reduced before being used for pyrolysis.

Pyrolysis processes can be categorized as slow pyrolysis or fast pyrolysis. Fast pyrolysis is currently the most widely used pyrolysis system. Slow pyrolysis takes several hours to complete and results in biochar as the main product. On the other hand, fast pyrolysis yields 60% bio-oil and takes seconds for complete pyrolysis. In addition, it gives 20% biochar and 20% syngas.

Bio-oil

Bio-oil is a dark brown liquid and has a similar composition to biomass. It has a much higher density than woody materials which reduces storage and transport costs. Bio-oil is not suitable for direct use in standard internal combustion engines. Alternatively, the oil can be upgraded to either a special engine fuel or through gasification processes to a syngas and then bio-diesel. Bio-oil is particularly attractive for co-firing because it can be more readily handled and burned than solid fuel and is cheaper to transport and store.

Bio-oil can offer major advantages over solid biomass and gasification due to the ease of handling, storage and combustion in an existing power station when special start-up procedures are not necessary. In addition, bio-oil is also a vital source for a wide range of organic compounds and speciality chemicals.

Biomass Wastes from Palm Oil Mills

The Palm Oil industry generates large quantity of wastes whose disposal is a challenging task. In the Palm Oil mill, fresh fruit bunches are sterilized after which the oil fruits can be removed from the branches. The empty fruit bunches (are left as residues, and the fruits are pressed in oil mills. The Palm Oil fruits are then pressed, and the kernel is separated from the press cake (mesocarp fibers). The palm kernels are then crushed and the kernels then transported and pressed in separate mills.

In a typical Palm Oil plantation, almost 70% of the fresh fruit bunches are turned into wastes in the form of empty fruit bunches, fibers and shells, as well as liquid effluent. These by-products can be converted to value-added products or energy to generate additional profit for the Palm Oil Industry.

Palm Kernel Shells (PKS)

Palm kernel shells (or PKS) are the shell fractions left after the nut has been removed after crushing in the Palm Oil mill. Kernel shells are a fibrous material and can be easily handled in bulk directly from the product line to the end use. Large and small shell fractions are mixed with dust-like fractions and small fibres.

Moisture content in kernel shells is low compared to other biomass residues with different sources suggesting values between 11% and 13%. Palm kernel shells contain residues of Palm Oil, which accounts for its slightly higher heating value than average lignocellulosic biomass. Compared to other residues from the industry, it is a good quality biomass fuel with uniform size distribution, easy handling, easy crushing, and limited biological activity due to low moisture content.

Press fibre and shell generated by the Palm Oil mills are traditionally used as solid fuels for steam boilers. The steam generated is used to run turbines for electricity production. These two solid fuels alone are able to generate more than enough energy to meet the energy demands of a Palm Oil mill.

Empty Fruit Bunches (EFBs)

In a typical Palm Oil mill, empty fruit bunches are abundantly available as fibrous material of purely biological origin. EFB contains neither chemical nor mineral additives, and depending on proper handling operations at the mill, it is free from foreign elements such as gravel, nails, wood residues, waste etc. However, it is saturated with water due to the biological growth combined with the steam sterilization at the mill. Since the moisture content in EFB is around 67%, pre-processing is necessary before EFB can be considered as a good fuel.

In contrast to shells and fibers, empty fruit bunches are usually burnt causing air pollution or returned to the plantations as mulch. Empty fruit bunches can be conveniently collected and are available for exploitation in all Palm Oil mills. Since shells and fibres are easy-to-handle, high quality fuels compared to EFB, it will be advantageous to utilize EFB for on-site energy demand while making shells and fibres available for off-site utilization which may bring more revenues as compared to burning on-site.

Palm Oil Mill Effluent (POME)

Palm Oil processing also gives rise to highly polluting waste-water, known as Palm Oil Mill Effluent, which is often discarded in disposal ponds, resulting in the leaching of contaminants that pollute the groundwater and soil, and in the release of methane gas into the atmosphere. POME could be used for biogas production through anaerobic digestion. At many Palm-oil mills this process is already in place to meet water quality standards for industrial effluent. The gas, however, is flared off.

In a conventional Palm Oil mill, 600-700 kg of POME is generated for every ton of processed FFB. Anaerobic digestion is widely adopted in the industry as a primary treatment for POME. Liquid effluents from palm oil mills can be anaerobically converted into biogas which in turn can be used to generate power through gas turbines or gas-fired engines.

Conclusions

Most of the Biomass residues from Palm Oil Mills are either burnt in the open or disposed off in waste ponds. The Palm Oil industry, therefore, contributes significantly to global climate change by emitting carbon dioxide and methane. Like sugar mills, Palm Oil mills have traditionally been designed to cover their own energy needs (process heat and electricity) by utilizing low pressure boilers and back pressure turbo-generators. Efficient energy conversion technologies, especially thermal systems for crop residues, that can utilize all Palm Oil residues, including EFBs, are currently available.

In the Palm Oil value chain there is an overall surplus of by-products and their utilization rate is negligible, especially in the case of POME and EFBs. For other mill by-products the efficiency of the application can be increased. Presently, shells and fibers are used for in-house energy generation in mills but empty fruit bunches is either used for mulching or dumped recklessly. Palm Oil industry has the potential of generating large amounts of electricity for captive consumption as well as export of surplus power to the public grid.