Harnessing Bioenergy from Everyday Rubbish

Converting everyday rubbish into usable energy once seemed like science fiction, but bioenergy has made it reality. This sustainable solution transforms waste into valuable fuel sources while also benefiting the environment.

Bioenergy provides a profitable way to upcycle discarded items into clean power instead of letting them pile up in landfills. What was once treated as garbage now becomes a source of renewable energy for society’s needs. With bioenergy, there is potential to turn waste into an environmental and economic asset.

bioenergy from municipal waste

Definition of Bioenergy

You might be wondering what exactly is bioenergy? In simple terms, bioenergy is energy derived from organic materials. These materials can range from agricultural residues, forest waste, food scraps or even animal manure. The process of converting these ‘biomass’ resources into bioenergy can take several forms, like burning for heat and power, fermenting for biofuels or subjecting them to anaerobic digestion to generate biogas.

Various Sources of Bioenergy

Nature offers an abundance of sources for generating bioenergy. You have wood pellets and chips from forests, manure from farming activities, crop residues left after harvests and even energy crops grown explicitly for this purpose like switchgrass or miscanthus. The spectrum doesn’t end here though; household waste also qualifies as a potential contributor to this list which you will explore more next.

Understanding Everyday Rubbish

If you were thinking that household rubbish is just useless trash, think again! Household waste consists of food scraps, glass bottles, plastic containers, paper products – stuff that you discard every day. This seemingly insignificant rubbish when recycled correctly can generate appreciable amounts of bioenergy contributing towards sustainable energy practices for society.

Contribution of Rubbish Removals

The company Same Day Rubbish Removals plays a significant part in Melbourne’s waste management ecosystem by providing quick and efficient removal services. They responsibly handle all types of waste – from household junk to electronic waste and green waste which can boost the raw material sources for bioenergy. You can see the services on offer here https://www.samedayrubbishremovalmelbourne.com.au/.

Beyond mere rubbish collection and disposal, they also advocate for proper recycling which aligns perfectly with the ideal principles of bioenergy generation and closing the loop on waste management for a sustainable future.

Importance of Bioenergy

Bioenergy today holds tremendous importance in the roadmap towards carbon neutrality. It serves as a renewable alternative to fossil fuels thus reducing our carbon footprint. Not only for large industries, but it can also be adopted at the community level through bioenergy plants helping cities reduce their reliance on non-renewable energy sources. The end products such as electricity, heat or biofuels have wide applications across sectors.

 

Role of Everyday Rubbish

Everyday rubbish plays a crucial role in this bioenergy narrative. Home waste when segregated correctly can segregate organic wastes fit for conversion into bioenergy. Post-consumer packaging materials, when recycled, could divert significant volumes of waste from landfills and transform them into value-added bioenergy resources. Our household waste has the potential to shift the energy paradigm!

Detailed Process of Conversion

The conversion of biomass into bioenergy isn’t just a one-step process. It involves several stages: collection, separation and treatment followed by chemical reactions that help extract energy. Techniques such as anaerobic digestion turn organic wastes into biogas or advanced thermal technologies like gasification that convert solid waste into synthetic fuels.

Everyday Rubbish to Bioenergy: How?

If you are curious about how everyday rubbish transforms into bioenergy, carry on reading! Organic kitchen wastes or garden clippings undergo anaerobic digestion in specially designed digesters to produce methane-rich gas which is subsequently burnt to generate heat and electricity. Non-organic materials like plastics get subjected to advanced thermal methods to produce an oil-like substance that can substitute crude oil in refineries.

Benefits of Bioenergy Production

Bioenergy production brings multiple perks. Obviously, the generation of renewable energy is its biggest appeal, allowing us to cut back on fossil fuel usage. However, it’s also a great solution for managing waste more effectively and reducing the volume going to landfills daily. Additionally, it promotes recycling and could stimulate new employment and business opportunities in the waste management sector.

Anaerobic Digestion of Food Wastes

Challenges in Bioenergy Harnessing

Despite its myriad of benefits and potentials, bioenergy faces certain challenges that need to be tackled effectively. Issues such as high initial capital costs for setting up bioenergy plants and the lack of advanced technology for efficient transformation remain roadblocks. Apart from these, there is also a considerable lack of energy subsidies and regulatory policies favoring bioenergy.

Apart from this, the fluctuating biomass feedstock prices could affect the economic viability of bioenergy projects. Also, the public’s perception towards waste-to-energy conversion and their willingness to segregate their waste can also pose uncertainties in success rates.

Role of Technology in Bioenergy

Technology plays an irreplaceable role in streamlining and accelerating the conversion of everyday rubbish into bioenergy. Advanced processing technologies like anaerobic digestion, gasification, pyrolysis and fermentation not only make bioenergy production possible but have been instrumental in increasing its efficiency over time.

This evolution has been further revolutionized by innovations like next-generation sequencing techniques that promise improvements in the variety and capacity of bio-energy fuels achievable from waste.

The Concept of Waste Hierarchy

The concept of the waste hierarchy revolves around three key principles: reduce, reuse, and recycle. This system places a high emphasis on reducing waste generation to the maximum extent possible, reusing materials as long as their useful life permits and recycling what’s left to extract maximum value.

This strategy is fundamental to converting rubbish into bioenergy. The better people adhere to these principles, the more efficiently people can convert everyday waste into bioenergy fueling a closed-loop circular economy.

International Approaches to Bioenergy

The adoption of bioenergy strategies varies worldwide. In Europe, especially in countries like Germany and Sweden, aggressive renewable energy policies have promoted significant advances in bioenergy generation from waste. Conversely, in developing regions like Africa and South America, biomass-based heating and power applications are mainly used due to infrastructure constraints.

Every nation has different potential and challenges in embracing bioenergy. What’s crucial is adapting technologies to the specifics of each nation to fully harness the potential of waste-based bioenergy.

Different Bioenergy Technologies

There is a broad array of technologies that enable the transformation of rubbish to bioenergy. Anaerobic digestion and fermentation techniques predominantly deal with organic materials like food waste and crop residues. Pyrolysis and gasification are more suited for non-organic waste, converting complex matter into simpler forms that can be burned as fuels or further processed into biofuels or chemicals.

Such a spectrum of technologies can address varying types of wastes and produce diverse outputs making waste management versatile and flexible.

Policies on Bioenergy and Waste Management

Effective policies can stimulate bioenergy production from everyday rubbish removal. Strong waste management regulations coupled with initiatives that incentivize bioenergy projects could expedite the adoption of this technology in not only industries but also smaller communities.

Acknowledging the environmental benefits of waste-based bioenergy through a carbon credit system can create an enabling environment for this sector to thrive.

The Summary

Synthesizing bioenergy from rubbish is a poignant example of sustainability in action. As people strive towards a cleaner planet, this alternate strategy could play a significant role. It’s about viewing our wastes not as a problem, but as an answer. To paraphrase Da Vinci, you know you have learned enough when you have grasped the principle of turning everything harmful into something beneficial. That is undoubtedly what converting solid waste into bioenergy achieves.

Overview of Biomass Energy Technologies

A wide range of bioenergy technologies are available for realizing the energy potential of biomass wastes, ranging from very simple systems for disposing of dry waste to more complex technologies capable of dealing with large amounts of industrial waste. Conversion routes for biomass wastes are generally thermo-chemical or bio-chemical, but may also include chemical and physical.

Thermal Technologies

The three principal methods of thermo-chemical conversion corresponding to each of these energy carriers are combustion in excess air, gasification in reduced air, and pyrolysis in the absence of air. Direct combustion is the best established and most commonly used technology for converting wastes to heat.

During combustion, biomass is burnt in excess air to produce heat. The first stage of combustion involves the evolution of combustible vapours from wastes, which burn as flames. Steam is expanded through a conventional turbo-alternator to produce electricity. The residual material, in the form of charcoal, is burnt in a forced air supply to give more heat.

Co-firing or co-combustion of biomass wastes with coal and other fossil fuels can provide a short-term, low-risk, low-cost option for producing renewable energy while simultaneously reducing the use of fossil fuels. Co-firing involves utilizing existing power generating plants that are fired with fossil fuel (generally coal), and displacing a small proportion of the fossil fuel with renewable biomass fuels.

Co-firing has the major advantage of avoiding the construction of new, dedicated, waste-to-energy power plant. An existing power station is modified to accept the waste resource and utilize it to produce a minor proportion of its electricity.

Gasification systems operate by heating biomass wastes in an environment where the solid waste breaks down to form a flammable gas. The gasification of biomass takes place in a restricted supply of air or oxygen at temperatures up to 1200–1300°C. The gas produced—synthesis gas, or syngas—can be cleaned, filtered, and then burned in a gas turbine in simple or combined-cycle mode, comparable to LFG or biogas produced from an anaerobic digester.

The final fuel gas consists principally of carbon monoxide, hydrogen and methane with small amounts of higher hydrocarbons. This fuel gas may be burnt to generate heat; alternatively it may be processed and then used as fuel for gas-fired engines or gas turbines to drive generators. In smaller systems, the syngas can be fired in reciprocating engines, micro-turbines, Stirling engines, or fuel cells.

Pyrolysis is thermal decomposition occurring in the absence of oxygen. During the pyrolysis process, biomass waste is heated either in the absence of air (i.e. indirectly), or by the partial combustion of some of the waste in a restricted air or oxygen supply. This results in the thermal decomposition of the waste to form a combination of a solid char, gas, and liquid bio-oil, which can be used as a liquid fuel or upgraded and further processed to value-added products.

Biochemical Technologies

Biochemical processes, like anaerobic digestion, can also produce clean energy in the form of biogas which can be converted to power and heat using a gas engine. Anaerobic digestion is a series of chemical reactions during which organic material is decomposed through the metabolic pathways of naturally occurring microorganisms in an oxygen depleted environment. In addition, wastes can also yield liquid fuels, such as cellulosic ethanol and biodiesel, which can be used to replace petroleum-based fuels.

Anaerobic digestion is the natural biological process which stabilizes organic waste in the absence of air and transforms it into biogas and biofertilizer. Almost any organic material can be processed with anaerobic digestion. This includes biodegradable waste materials such as municipal solid waste, animal manure, poultry litter, food wastes, sewage and industrial wastes.

An anaerobic digestion plant produces two outputs, biogas and digestate, both can be further processed or utilized to produce secondary outputs. Biogas can be used for producing electricity and heat, as a natural gas substitute and also a transportation fuel. Digestate can be further processed to produce liquor and a fibrous material. The fiber, which can be processed into compost, is a bulky material with low levels of nutrients and can be used as a soil conditioner or a low level fertilizer.

A variety of fuels can be produced from biomass wastes including liquid fuels, such as ethanol, methanol, biodiesel, Fischer-Tropsch diesel, and gaseous fuels, such as hydrogen and methane. The resource base for biofuel production is composed of a wide variety of forestry and agricultural resources, industrial processing residues, and municipal solid and urban wood residues.

The largest potential feedstock for ethanol is lignocellulosic biomass wastes, which includes materials such as agricultural residues (corn stover, crop straws and bagasse), herbaceous crops (alfalfa, switchgrass), short rotation woody crops, forestry residues, waste paper and other wastes (municipal and industrial).

The three major steps involved in cellulosic ethanol production are pretreatment, enzymatic hydrolysis, and fermentation. Biomass is pretreated to improve the accessibility of enzymes. After pretreatment, biomass undergoes enzymatic hydrolysis for conversion of polysaccharides into monomer sugars, such as glucose and xylose. Subsequently, sugars are fermented to ethanol by the use of different microorganisms. Bioethanol production from these feedstocks could be an attractive alternative for disposal of these residues. Importantly, lignocellulosic feedstocks do not interfere with food security.

Biochemical Conversion of Biomass

Biochemical conversion of biomass involves use of bacteria, microorganisms and enzymes to breakdown biomass into gaseous or liquid fuels, such as biogas or bioethanol. The most popular biochemical technologies are anaerobic digestion (or biomethanation) and fermentation. Anaerobic digestion is a series of chemical reactions during which organic material such as human waste is decomposed through is decomposed through the metabolic pathways of naturally occurring microorganisms in an oxygen depleted environment.

Biomass wastes can also yield liquid fuels, such as cellulosic ethanol, which can be used to replace petroleum-based fuels.If you are writing an essay related to this topic experts from the best custom essay service in usa advise you to read and analyze the information provided in this article.

Anaerobic Digestion

Anaerobic digestion is the natural biological process which stabilizes organic waste in the absence of air and transforms it into biofertilizer and biogas. Anaerobic digestion is a reliable technology for the treatment of wet, organic waste. Organic waste from various sources is biochemically degraded in highly controlled, oxygen-free conditions circumstances resulting in the production of biogas which can be used to produce both electricity and heat. Biomass conversion technologies are slowing being built for home boilers also.

The team over at The Solar Advantage says this, ‘”Almost any organic material can be processed with anaerobic digestion. This includes biodegradable waste materials such as municipal solid waste, animal manure, poultry litter, food wastes, sewage and industrial wastes.”

An anaerobic digestion plant produces two outputs, biogas and digestate, both can be further processed or utilized to produce secondary outputs. Biogas can be used for producing electricity and heat, as a natural gas substitute and also a transportation fuel. A combined heat and power plant system (CHP) not only generates power but also produces heat for in-house requirements to maintain desired temperature level in the digester during cold season. In Sweden, the compressed biogas is used as a transportation fuel for cars and buses. Biogas can also be upgraded and used in gas supply networks.

Working of Anaerobic Digestion Process

Digestate can be further processed to produce liquor and a fibrous material. The fiber, which can be processed into compost, is a bulky material with low levels of nutrients and can be used as a soil conditioner or a low level fertilizer. A high proportion of the nutrients remain in the liquor, which can be used as a liquid fertilizer. Many companies are use R&D tax credits to carry out these initiatives.

Biofuel Production

A variety of fuels can be produced from waste resources including liquid fuels, such as ethanol, methanol, biodiesel, Fischer-Tropsch diesel, and gaseous fuels, such as hydrogen and methane. The resource base for biofuel production is composed of a wide variety of forestry and agricultural resources, industrial processing residues, and municipal solid and urban wood residues. Globally, biofuels are most commonly used to power vehicles, heat homes, and for cooking, apart from powering home boilers.

The largest potential feedstock for ethanol is lignocellulosic biomass wastes, which includes materials such as agricultural residues (corn stover, crop straws and bagasse), herbaceous crops (alfalfa, switchgrass), short rotation woody crops, forestry residues, waste paper and other wastes (municipal and industrial). Bioethanol production from these feedstocks could be an attractive alternative for disposal of these residues. Importantly, lignocellulosic feedstocks do not interfere with food security.

Ethanol from lignocellulosic biomass is produced mainly via biochemical routes. The three major steps involved are pretreatment, enzymatic hydrolysis, and fermentation. Biomass is pretreated to improve the accessibility of enzymes. After pretreatment, biomass undergoes enzymatic hydrolysis for conversion of polysaccharides into monomer sugars, such as glucose and xylose. Subsequently, sugars are fermented to ethanol by the use of different microorganisms.

Best Cordless Finish Nailer

How Food Waste and Recycling Could Generate Bioenergy

Food waste is a major issue globally, with an estimated 1.3 billion tons of food wasted each year. This not only contributes to greenhouse gas emissions but also wastes valuable resources such as water and energy. However, there is a solution that not only tackles food waste but also generates bioenergy: food recycling.

bioenergy from food waste recycling

What is Food Recycling?

Food recycling is the process of taking food waste and turning it into a useful resource. This can be done through a variety of methods, including composting, anaerobic digestion, and fermentation. The result is a valuable product that can be used as a fertilizer or as a source of energy.

Generating Bioenergy from Food Waste

One of the most promising applications of food waste recycling is the generation of bioenergy. Bioenergy is a form of renewable energy that is derived from organic matter, such as food waste. By using food waste to generate bioenergy, we can reduce our dependence on fossil fuels and decrease our carbon footprint.

1. Anaerobic Digestion

Anaerobic digestion is one of the most common methods of generating bioenergy from food waste. This process involves breaking down organic matter in the absence of oxygen, producing biogas as a by-product. Biogas is a mixture of methane and carbon dioxide that can be burned to generate electricity or heat.

The process of anaerobic digestion starts with the collection of food waste. This can be done at a household level, with individuals separating their food waste from other types of waste. Alternatively, food waste can be collected from commercial and industrial sources, such as restaurants and food processing plants.

Once collected, the food waste is transported to an anaerobic digestion facility, where it is mixed with water and placed in a sealed tank called a digester. Inside the digester, bacteria break down the organic matter in the absence of oxygen, producing biogas as a by-product. The biogas is then collected and used to generate electricity or heat.

Advantages of Anaerobic Digestion

One of the advantages of anaerobic digestion is that it can be done on a small scale, making it a viable option for households and small businesses. In fact, many households in rural areas use small-scale anaerobic digesters to generate their own electricity and heat.

biogas-enrichment

Another advantage of anaerobic digestion is that it produces a valuable fertilizer as a by-product. The residue left over from the process, known as digestate, is a nutrient-rich material that can be used as a fertilizer for crops.

2. Fermentation

Fermentation is another method of generating bioenergy from food waste. This process involves breaking down organic matter using microorganisms, such as yeast or bacteria. The result is a product such as ethanol or biobutanol, which can be used as a fuel for vehicles or as a source of energy.

The process of fermentation starts with the collection of food waste, which is then mixed with water and enzymes to break down the organic matter. Microorganisms are then added to the mixture, which ferment the organic matter and produce ethanol or biobutanol as a by-product.

Advantages of Fermentation 

Like anaerobic digestion, fermentation can be done on a small scale, making it a viable option for households and small businesses. However, it is not as common as anaerobic digestion, as it requires more specialized equipment and expertise.

A Glance at Drop-in Biofuels

Biofuel commercialization has proved to be costly and lingering than expected due to its high production cost and modification to flexibility in engines. Drop-in fuels are alternatives to existing liquid fuels without any significant modification in engines and infrastructures. According to IEA, “Drop-in biofuels are liquid bio-hydrocarbons that are functionally equivalent to petroleum fuels and are fully compatible with existing petroleum infrastructure”.

drop-in-biofuels

What are Drop-in Biofuels

Drop-in biofuels are can be produced from oilseeds via trans-esterification, lignocellulosic biomass via thermochemical process, sugars and alcohol via biochemical conversion or by hybrids of the above methods. Drop-in fuels encompass high hydrogen to carbon ratio with no/low sulfur and oxygen content, low water solubility and high carbon bond saturation. In short drop-in fuel is a modified fuel with close functional resemblance to fossil fuel.

Existing biofuels – bioethanol and biodiesel – have wide variation from fossil fuels in their blend wall properties – high oxygen content, hydrophilicity, energy density and mainly compatibility in existing engines and infrastructures. Oxygenated groups in biofuel have a domino effect such as reduction in the energy density, production of impurities which are highly undesirable to transportation components, instability during storage etc.

Major advantages of drop-in fuels over existing fuels are as follows:

  • Reduced sulphur oxide emissions by ultra low sulphur content.
  • Reduced ignition delay by high cetane value
  • Reduced hydrocarbons and nitrogen oxides emissions
  • Low aromatic content
  • Low olefin content, presence of olefin compounds undergo auto-oxidation leading to surface depositions.
  • High saturates, therefore leaving minimum residues
  • Low particulate emissions
  • No oxygenates therefore has high stability.

Potential Biomass Feedstock

Drop-in biofuels can be produced from various biomass sources- lipids (vegetable oils, animal fats, greases, and algae) and lignocellulosic material (such as crop residues, woody biomass, and dedicated energy crops). The prominent technologies for biomass conversion to drop-in fuel are the thermochemical and the biochemical process.

The major factor playing role in selection of biomass for thermochemical methods is the energy content or heating value of the material, which is correlated with ash content. Wood, wood chips accounts for less than 1% ash content, which is favorable thermal processing than biochemical process, whereas straws, husks, and majority of the other biomass have ash content ranging up to 25% of dry mass.

Free sugar generating plants such as sugarcane and sweet sorghum, are desirable feedstock for Acetone-Butanol-Ethanol fermentation and have been widely implemented. Presently there is a focus to exploit lignocellulosic residues, rich in hydrocarbon, for fuel production. However, this biomass requires harsh pretreatment to remove lignin and to transform holocellulose (cellulose & hemicelluloses) into fermentable products.

The lignocellulose transformation technology must be circumspectly chosen by its life cycle assessment, as it resists any changes in their structural integrity owing to its complexity. Lignocellulosic biomass, when deoxygenated, has better flexibility to turn to drop-in fuels. This is because, in its native state of the feedstock, each oxygen atom consumes two hydrogen atoms during combustion which in turn reduces effective H: C ratio. Biomass feedstock is characterized with oxygen up to 40%, and higher the oxygen content higher it has to be deoxygenated.

Thermochemical Route

Thermochemical methods adopted for biomass are pyrolysis and gasification, on thermolysis of biomass produce intermediate gas (syngas) and liquid (bio crude) serving as precursors for drop-in fuel. Biomass when exposed to temperature of 500oC-600oC in absence of oxygen (pyrolysis) produce bio-oil, which constitutes a considerable percentage of oxygen. After down streaming by hydroprocessing (hydrotreating and hydrocracking) the rich hydrocarbon tar (bio-oil) can be converted to an efficient precursor for drop-in fuel.

At a higher temperature, above 700, under controlled oxygen, biomass can be converted to liquid fuel via gas phase by the process, gasification. Syngas produced is converted to liquid fuel by Fischer-Tropsch with the help of ‘water gas shift’ for hydroprocessing. Hydroprocessing after the thermochemical method is however costly and complex process in case of pyrolysis and inefficient biomass to fuel yield with gasification process.

Biochemical Pathway

The advanced biocatalytic processes can divert the conventional sugar-ethanol pathway and convert sugars to fatty acids. Modified microbial strain with engineered cellular machineries, can reroute the pathway to free fatty acid that can be transformed into butanol or drop-in fuel with necessary processing.

Schematic for the preparation of jet fuel from biomass

Schematic for the preparation of jet fuel from biomass

Biological processing requires operation under the stressful conditions on the organisms to reroute the pathways, in additional to lowering NADPH (hydrogen) consumption. Other value added products like carboxylic acid, polyols, and alcohol in the same biological routes with lower operational requirements have higher market demands and commercial success. Therefore little attention is given by chemical manufacturers to the biological pathways for drop-in fuel production.

The mechanisms of utilization of lignocellulosic biomass to fuel by biological pathway rely heavily on the availability of monomeric C5 and C6 sugars during fermentation. Ethanol is perhaps the best-known and commercially successful alcohol from ABE fermentation. However, butanol has various significant advantages over ethanol- in the perception of energy content, feasibility to existing infrastructures, zero blend wall, safety and clean aspects.

Although butanol is a closer drop-in replacement, existing biofuel ethanol, is a major commercial competitor. Low yield from fermentation due to the toxicity of butanol and complexity in down streaming are the vital reasons that hamper successful large scale butanol production.

Also Read: Top Sustainable Power Solutions for Modern Aviation

Challenges to Overcome

Zero oxygen and sulphur content mark major challenges for production of drop-in fuels from conventional biomass. This demands high hydrogen input on the conventional biomass, with H: C ratio below 0.5, like sugar, starch, cellulose, lignocellulose to meet the effective hydrogen to carbon ratio of 2 as in drop-in fuel. This characterizes most of the existing biomass feedstock as a low-quality input for drop-in fuels. However oleochemicals like fats, oils, and lipids have closer H: C ratio to diesel, gasoline and drop-in fuels, thus easier to conversion.

Oleochemical feedstock has been commercially successful, but to prolong in the platform will be a major challenge. Lipid feedstock is generally availed from crop-based vegetable oil, which is used in food sectors. Therefore availability, food security concerns, and economics are the major constraints to sustaining the raw material. Consequently switching to lignocellulosic biomass feedstock for drop-in holds on.

Conclusions

Despite the hurdles on biomass characteristics and process technology for drop-in fuel, it is a vital requirement to switch to better replacement fuel for fossil fuel, considering environmental and economic benefits. Understanding its concepts and features, drop-in fuel, can solve existing greenhouse emission debate on current biofuels. Through crucial ambiguities existing on future of alternative fuels, drop-in fuel has a substantial potential to repute itself as an efficient sustainable eco-friendly fuel in the near future.

References

  • Neal K Van Alfen: ENCYCLOPEDIA OF AGRICULTURE AND FOOD SYSTEMS, Elsevier, Academic Press.
  • Pablo Domínguez de María John: INDUSTRIAL BIORENEWABLES:A Practical Viewpoint: Wiley & Sons.
  • Ram Sarup Singh, Ashok Pandey, Edgard Gnansounou: BIOFUELS- PRODUCTION AND FUTURE PERSPECTIVES, CRC Press.
  • Satinder Kaur Brar, Saurabh Jyoti Sarma, Kannan Pakshirajan : PLATFORM CHEMICAL BIOREFINERY-FUTURE GREEN CHEMISTRY, Elsevier.
  • Sergios Karatzos, James D. McMillan, Jack N. Saddle: Summary of IEA BIOENERGY TASK 39 REPORT-THE POTENTIAL AND CHALLENGES OF DROP-IN BIOFUELS, IEA Bioenergy.
  • Vijai Kumar Gupta, Monika Schmoll, Minna Maki, Maria Tuohy, Marcio Antonio Mazutti: APPLICATIONS OF MICROBIAL ENGINEERING, CRC Press.

Know About Popular Waste to Energy Conversion Routes

Waste-to-energy is the use of combustion and biological technologies to recover energy from urban wastes. There are three major waste to energy conversion routes – thermochemical, biochemical and physico-chemical. Thermochemical conversion, characterized by higher temperature and conversion rates, is best suited for lower moisture feedstock and is generally less selective for products. On the other hand, biochemical technologies are more suitable for wet wastes which are rich in organic matter.

Teesside-WTE-plant

Thermochemical Conversion of Waste

The three principal methods of thermochemical conversion of waste are combustion in excess air, gasification in reduced air, and pyrolysis in the absence of air. The most common technique for producing both heat and electrical energy from household wastes is direct combustion.

Combined heat and power (CHP) or cogeneration systems, ranging from small-scale technology to large grid-connected facilities, provide significantly higher efficiencies than systems that only generate electricity.

WTE_Pathways

Combustion technology is the controlled combustion of waste with the recovery of heat to produce steam which in turn produces power through steam turbines. Pyrolysis and gasification represent refined thermal treatment methods as alternatives to incineration and are characterized by the transformation of the waste into product gas as energy carrier for later combustion in, for example, a boiler or a gas engine. Plasma gasification, which takes place at extremely high temperature, is also hogging limelight nowadays.

Biochemical Conversion of Waste

Biochemical processes, like anaerobic digestion, can also produce clean energy in the form of biogas which can be converted to power and heat using a gas engine. Anaerobic digestion is the natural biological process which stabilizes organic waste in the absence of air and transforms it into biofertilizer and biogas.

Anaerobic digestion is a reliable technology for the treatment of wet, organic waste.  Organic waste from various sources is biochemically degraded in highly controlled, oxygen-free conditions circumstances resulting in the production of biogas which can be used to produce both electricity and heat.

anaerobic_digestion_plant

In addition, a variety of fuels can be produced from waste resources including liquid fuels, such as ethanol, methanol, biodiesel, Fischer-Tropsch diesel, and gaseous fuels, such as hydrogen and methane. The resource base for biofuel production is composed of a wide variety of forestry and agricultural resources, industrial processing residues, and municipal solid and urban wood residues. Globally, biofuels are most commonly used to power vehicles, heat homes, and for cooking.

Physico-chemical Conversion of Waste

The physico-chemical conversion of waste involves various processes to improve physical and chemical properties of solid waste. The combustible fraction of the waste is converted into high-energy fuel pellets which may be used in steam generation.

RDF pellet

The waste is first dried to bring down the high moisture levels. Sand, grit, and other incombustible matter are then mechanically separated before the waste is compacted and converted into fuel pellets or RDF.

Fuel pellets have several distinct advantages over coal and wood because it is cleaner, free from incombustibles, has lower ash and moisture contents, is of uniform size, cost-effective, and eco-friendly.

Biochemical Method for Ethanol Production

Ethanol from lignocellulosic biomass is produced mainly via biochemical route. The three major steps involved in the biochemical method for ethanol production are pretreatment, enzymatic hydrolysis, and fermentation. Biomass is pretreated to improve the accessibility of enzymes. After pretreatment, biomass undergoes enzymatic hydrolysis for conversion of polysaccharides into monomer sugars, such as glucose and xylose. Subsequently, sugars are fermented to ethanol by the use of different microorganisms.

Bioethanol-production-process

Pretreated biomass can directly be converted to ethanol by using the process called simultaneous saccharification and cofermentation (SSCF). Pretreatment is a critical step which enhances the enzymatic hydrolysis of biomass.

Basically, it alters the physical and chemical properties of biomass and improves the enzyme access and effectiveness which may also lead to a change in crystallinity and degree of polymerization of cellulose. The internal surface area and pore volume of pretreated biomass are increased which facilitates substantial improvement in accessibility of enzymes. The process also helps in enhancing the rate and yield of monomeric sugars during enzymatic hydrolysis steps.

Pretreatment methods can be broadly classified into four groups – physical, chemical, physio-chemical and biological. Physical pretreatment processes employ the mechanical comminution or irradiation processes to change only the physical characteristics of biomass. The physio-chemical process utilizes steam or steam and gases, like SO2 and CO2. The chemical processes employs acids (H2SO4, HCl, organic acids etc) or alkalis (NaOH, Na2CO3, Ca(OH)2, NH3 etc).

The acid treatment typically shows the selectivity towards hydrolyzing the hemicelluloses components, whereas alkalis have better selectivity for the lignin. The fractionation of biomass components after such processes help in improving the enzymes accessibility which is also important to the efficient utilization of enzymes.

The pretreated biomass is subjected to enzymatic hydrolysis using cellulase enzymes to convert the cellulose to fermentable sugars. Cellulase refers to a class of enzymes produced chiefly by fungi and bacteria which catalyzes the hydrolysis of cellulose by attacking the glycosidic linkages. Cellulase is mixture of mainly three different functional protein groups: exo-glucanase (Exo-G), endo-glucanase(Endo-G) and ?-glucosidase (?-G).

The functional proteins work synergistically in hydrolyzing the cellulose into the glucose. These sugars are further fermented using microorganism and are converted to ethanol. The microorganisms are selected based on their efficiency for ethanol productivity and higher product and inhibitors tolerance. Yeast Saccharomyces cerevisiae is used commercially to produce the ethanol from starch and sucrose.

Escherichia coli strain has also been developed recently for ethanol production by the first successful application of metabolic engineering. E. coli can consume variety of sugars and does not require the complex growth media but has very narrow operable range of pH. E. coli has higher optimal temperature than other known strains of bacteria.

Lower GHG emissions and empowerment of rural economy are major benefits associated with bioethanol

The major cost components in bioethanol production from lignocellulosic biomass are the pretreatment and the enzymatic hydrolysis steps. In fact, these two process are someway interrelated too where an efficient pretreatment strategy can save substantial enzyme consumption.

Pretreatment step can also affect the cost of other operations such as size reduction prior to pretreatment. Therefore, optimization of these two important steps, which collectively contributes about 70% of the total processing cost, are the major challenges in the commercialization of bioethanol from 2nd generation feedstock.

Enzyme cost is the prime concern in full scale commercialization. The trend in enzyme cost is encouraging because of enormous research focus in this area and the cost is expected to go downward in future, which will make bioethanol an attractive option considering the benefits derived its lower greenhouse gas emissions and the empowerment of rural economy.

Could Biomass Be The Answer To South Africa’s Energy Problem

South Africa is experiencing a mammoth energy crisis with its debt-laden national power utility, Eskom, being unable to meet the electricity needs of the nation. After extensive periods of load shedding in 2018 and again earlier this year, it is becoming increasingly important to find an alternative source of energy. According to Marko Nokkala, senior sales manager at VTT Technical Research Centre of Finland, South Africa is in the perfect position to utilize biomass as an alternative source of energy.

Things to Consider

Should South Africa choose to delve deeper into biomass energy production, there are a few things that need to be considered. At present, a lot of biomass (such as fruit and vegetables) is utilized as food. It will, therefore, be necessary to identify alternative biomass sources that are not typically used as food, so that a food shortage is never created in the process.

biomass-sustainability

One alternative would be to use municipal solid waste from landfills and dumpsites as well as the wood waste from the very large and lucrative forestry industry in the country. It is also essential to keep in mind that an enormous amount of biomass will be needed to replace even a portion of the 90 million tons of coal that Eskom utilizes every year at its various power stations.

Potential Biomass Conversion Routes

There are a number of processing technologies that South Africans can utilize to turn their biomass into a sustainable energy source. Biochemical conversion involving technology such as anaerobic digestion and fermentation makes use of enzymes, microorganisms, and bacteria to breakdown the biomass into a variety of liquid or vaporous fuels.

WTE_Pathways

Fermentation is especially suitable when the biomass waste boasts a high sugar or water content, as is the case with a variety of agricultural wastes. By placing some focus on microbial fermentation process development, a system can effectively be created that will allow for large-scale biofuel production. Other technologies to consider include thermal methods like co-firing, pyrolysis, and gasification.

Future of biomass energy in South Africa

Despite the various obstacles that may slow down the introduction of large-scale biomass energy production in the country, it still promises to be a viable solution to the pressing energy concern. Biomass energy production does not require any of the major infrastructures that Eskom is currently relying on.

Although the initial setup will require a substantial amount of electricity, running a biomass conversion plant will cost significantly less than a coal-powered power plant in the long run. With the unemployment rate hovering around 27.1% in South Africa at present, any jobs created through the implementation of biomass energy conversion will be of great benefit to the nation.

Conclusion

Without speedy intervention, South Africa may very soon be left in the dark. Although there are already a number of wind farms in operation in the country, the addition of biomass conversion facilities will undoubtedly be of great benefit to Africa’s southernmost country.