Waste Management Challenges in Middle East

garbage-middle-eastMiddle East is one of the most prolific waste generating regions worldwide with per capita waste production in several countries averaging more than 2 kg per day . High standards of living, ineffective legislation, infrastructural roadblocks, indifferent public attitude and lack of environmental awareness are the major factors responsible for growing waste management problem in the Middle East. Lavish lifestyles are contributing to more generation of waste which when coupled with lack of waste collection and disposal facilities have transformed ‘trash’ into a liability.

Major Hurdles

The general perception towards waste is that of indifference and apathy. Waste is treated as ‘waste’ rather than as a ‘resource’. There is an urgent need to increase public awareness about environmental issues, waste management practices and sustainable living. Public participation in community-level waste management initiatives is lackluster mainly due to low level of environmental awareness and public education. Unfortunately none of the countries in the region have an effective source-segregation mechanism.

Waste management in Middle East is bogged down by deficiencies in waste management legislation and poor planning. Many countries lack legislative framework and regulations to deal with wastes. Insufficient funds, absence of strategic waste management plans, lack of coordination among stakeholders, shortage of skilled manpower and deficiencies in technical and operational decision-making are some of the hurdles experienced in implementing an integrated waste management strategy in the region. In many countries waste management is the sole prerogative of state-owned companies and municipalities which discourage participation of private companies and entrepreneurs.

Many Middle East nations lack legislative framework and regulations to deal with urban wastes.

Many Middle East nations lack legislative framework and regulations to deal with urban wastes.

Due to lack of garbage collection and disposal facilities, dumping of waste in open spaces, deserts and water bodies is a common sight across the region. Another critical issue is lack of awareness and public apathy towards waste reduction, source segregation and waste management.

A sustainable waste management system demands high degree of public participation, effective laws, sufficient funds and modern waste management practices/technologies. The region can hope to improve waste management scenario by implementing source-segregation, encouraging private sector participation, deploying recycling and waste-to-energy systems, and devising a strong legislative and institutional framework.

The Way Forward

In recent year, several countries, like Qatar, UAE and Oman, have established ambitious solid waste management projects but their efficacy is yet to be ascertained. On the whole, Middle East countries are slowly, but steadily, gearing up to meet the challenge posed by waste management by investing heavily in such projects, sourcing new technologies and raising public awareness. However the pace of progress is not matched by the increasing amount of waste generated across the region. Sustainable waste management is a big challenge for policy-makers, urban planners and other stake-holders, and immediate steps are needed to tackle mountains of wastes accumulating in cities throughout the Middle East.

Solid Waste Management in Pakistan

Karachi-Garbage-DumpSolid waste management situation in Pakistan is a matter of grave concern as more than 5 million people to die each year due to waste-related diseases. In Pakistan roughly 20 million tons of solid waste is generated annually, with annual growth rate of about 2.4 percent. Karachi, largest city in the country, generates more than 9,000 tons of municipal waste daily. All major cities, be it Islamabad, Lahore or Peshawar, are facing enormous challenges in tackling the problem of urban waste. The root factors for the worsening garbage problem in Pakistan are lack of urban planning, outdated infrastructure, lack of public awareness and endemic corruption.

Contributing Factors

Being the 6th most populated country in the world; there is a lot of consumerism and with it a great deal of waste being produced. Like other developing countries, waste management sector in Pakistan is plagued by a wide variety of social, cultural, legislative and economic issues.  In the country, more waste is being produced than the number of facilities available to manage it. Some of the major problems are:

  • There is no proper waste collection system
  • Waste is dumped on the streets
  • Different types of waste are not collected separately
  • There are no controlled sanitary landfill sites. Opening burning is common.
  • Citizens are not aware of the relationship between reckless waste disposal and resulting environmental and public health problems

As a result of these problems, waste is accumulating and building up on roadsides, canals, and other common areas and burning trash is common, causing hazardous toxins to be exposed thereby threatening human and environmental health. Among the already few landfill sites that are present, even fewer are in operation. Even within Pakistan’s capital, Islamabad, there are no permanent landfills to be found.

The waste on the roads allows for an ideal environment for various flies to thrive which effects both human health and the health of the environment for other species. The poor solid waste management in Pakistan has caused numerous diseases and environmental problems to rise.

Waste Management Situation in Lahore

In Lahore, the capital of Punjab and the second largest city in Pakistan, there are currently no controlled waste disposal facilities are formal recycling systems, though roughly 27% of waste (by weight) is recycled through the informal sector, Lahore does not have very high performing governmental management in the waste management situation. Instead, the City District Government Lahore established the Lahore Waste Management Company and left the responsibility of the Solid Waste Management in Lahore to them. Beginning in 2011, Lahore Waste Management Company strives to develop a system of SWM that ensures productive collection, recovery, transportation, treatment and disposal of the waste in Lahore.

Lahore Waste Management Company (LWMC) has over 10,000 field workers involved in waste collection and disposal. Though the LWMC is working in phases, 100% collection rates are not seen yet. Lahore currently only has three disposal sites which are no more than dumps, where illegal dumping and trash burning is common. However, there is some resource recovery taking place. It is estimated that 27% of dry recyclables are informally recycled within the city. Additionally a composting plant converts 8% of waste into compost.

In general, the governance over the Waste Management in Lahore is hardly present. Though there are current projects and plans taking place, by the Lahore Waste Management Company for example, in order to achieve a productive and sustainable system in the city it is necessary for all service providers (formal, private, and informal) to take part in decisions and actions.

Current Activities and Projects

According to the United Nations Environment Program, there are six current activities and plans taking place towards an efficient Waste Management System. These current activities are as follows:

  • Solid Waste Management Guidelines (draft) prepared with the support of Japan International Cooperation Agency (JICA), Japan.
  • Converting waste agricultural biomass into energy/ material source – project by UNEP, IETC Japan.
  • North Sindh Urban Services Corporation Limited (NSUSC) – Assisting the district government in design and treatment of water supply, sanitation and solid waste management
  • The URBAN UNIT, Urban Sector Policy & Management Unit P & D Department, Punjab. Conducting different seminars on awareness of waste water, sanitation & solid waste management etc.
  • Lahore Compost (Pvt.) Ltd. only dealing with the organic waste with the cooperation of city district government Lahore, Pakistan. The company is registered as a CDM project with UNFCCC.
  • Different NGOs are involved at small scale for solid waste collection, and recycling.

Additionally, in November 2013 a German company, agreed to invest in the installation of a 100 megawatt power plant which generates energy from waste from Lahore. Progress is being made on the country’s first scientific waste disposal site in Lakhodair. With this in mind, the Lahore Waste Management Company considered other possible technologies for their Waste-to-Energy project. They opened up applications for international companies to hire as the official consultant for LWMC and their project. The results of the feasibility study results showed that the power plant has the potential to process 1035 tons of municipal waste daily, and generate 5.50 megawatt electricity daily.

The Way Forward

Although SWM policies do exist, the levels at which they are implemented and enforced lack as a result of the governmental institutions lacking resources and equipment. These institutions are primarily led by public sector workers and politicians who are not necessarily the most informed on waste management. For improvements in municipal solid waste management, it is necessary for experts to become involved and assist in the environmental governance.

Due to the multiple factors contributing to the solid waste accumulation, the problem has become so large it is beyond the capacity of municipalities. The former director of the Pakistan Council of Scientific and Industrial Research, Dr. Mirza Arshad Ali Beg, stated, “The highly mismanaged municipal solid waste disposal system in Pakistan cannot be attributed to the absence of an appropriate technology for disposal but to the fact that the system has a lot of responsibility but no authority.” Laws and enforcement need to be revised and implemented. The responsibility for future change is in the hands of both the government, and the citizens.

Waste practices in the Pakistan need to be improved. This can start with awareness to the public of the health and environment impacts that dumped and exposed waste causes. It is imperative for the greater public to become environmentally educated, have a change in attitude and take action.

References

http://www.aljazeera.com/indepth/features/2014/08/solid-waste-pakistan-karachi-2014867512833362.html

http://www.iamcivilengineer.com/2014/04/solid-waste-disposal-and-collection.html

http://epd.punjab.gov.pk/solid_waste

http://www.aljazeera.com/indepth/features/2014/08/solid-waste-pakistan-karachi-2014867512833362.html

http://www.iamcivilengineer.com/2014/04/solid-waste-disposal-and-collection.html

http://www.lwmc.com.pk/about-us.php

http://www.unep.org/ietc/Portals/136/Events/ISWM%20GPWM%20Asia%20Pacific%20Workshop/Pakistan_Presentation.pdf

http://www.dawn.com/news/1081689

http://www.lwmc.com.pk/waste-to-energy.php

Solid Waste Management – India’s Burning Issue

For the first time in the history of India, the year 2012 saw several public protests against improper solid waste management all across India – from the northernmost state Jammu and Kashmir to the southernmost Tamil Nadu. A fight for the right to clean environment and environmental justice led the people to large scale demonstrations, including an indefinite hunger strike and blocking roads leading to local waste handling facilities. Improper waste management has also caused a Dengue Fever outbreak and threatens other epidemics. In recent years, waste management has been the only other unifying factor leading to public demonstrations all across India, after corruption and fuel prices. Public agitation resulted in some judicial action and the government’s remedial response, but the waste management problems are still unsolved and might lead to a crisis if this continues for too long without any long term planning and policy reforms.

Hunger Strike in Kerala

The President of Vilappilsala Village Panchayat went on a hunger strike recently, against her counterpart, the Mayor of Thiruvananthapuram. Thiruvananthapuram is the state capital of Kerala, and Vilappilsala is a village 22 km away. Since July 2000, about 80% of the waste generated in Thiruvananthapuram is being transported to a waste composting plant and a dumpsite in Vilappilsala village. Since the same month, respiratory illnesses reported in Vilappil Primary Health Center increased by 10 times from an average of 450 to 5,000 cases per month. People who used to regularly swim in the village’s aquifer started contracting infections; swarms of flies have ever since been pervasive; and a stigma of filth affected households throughout the community. This was a source of frustration as locals who, as Indians, prize the opportunity to feed and host guests, found them unwilling to even drink a glass of water in their homes. Currently, there is not a single household which has not experienced respiratory illnesses due to the waste processing plant and the adjoining dumpsite.

On the other hand, Thiruvananthapuram’s residents had to sneak out at night with plastic bags full of trash to dispose them behind bushes, on streets or in water bodies, and had to openly burn heaps of trash every morning for months. This was because the waste generated was not being collected by the City as it could not force open the composting plant and dumpsite against large scale protests by Vilappilsala’s residents. This is why in August – 2012, about 2,500 police personnel had to accompany trucks to the waste treatment plant as they were being blocked by local residents lying down on the road, and by some, including the village’s President, by going on an indefinite hunger strike.

Municipal Commissioner Replaced in Karnataka

In response to a similar situation in Bengaluru, the state capital of Karnataka, where the streets were rotting with piles of garbage for months, the municipal commissioner of the city was replaced to specifically address the waste management situation. Against the will of local residents, a landfill which was closed following the orders issued by the state’s pollution control board in response to public agitation had to be reopened soon after its closure as the city could not find a new landfill site.

Mavallipura landfill in Bangalore

Population density and the scale of increasing urban sprawl in India make finding new landfill sites around cities nearly impossible due to the sheer lack of space for Locally Unwanted Land Uses (LULUs) like waste management.

Dengue Outbreak in West Bengal

Even if partially because of improper waste management, Kolkata, state capital of West Bengal and the third biggest city in India experienced a Dengue Fever outbreak with 550 confirmed cases and 60 deaths. This outbreak coincides with a 600% increase in dengue cases in India and 71% increase in malarial cases in Mumbai in the last five years. Accumulation of rain water in non biodegradable waste littered around a city act as a major breeding environment for mosquitoes, thus increasing the density of mosquito population and making the transmission of mosquito related diseases like dengue, yellow fever and malaria easier.

Rabies in Srinagar

Rabies due to stray dog bites already kills more than 20,000 people in India every year. Improper waste management has caused a 1:13 stray dog to human ratio in Srinagar (compared to 1 per 31 people in Mumbai and 1 per 100 in Chennai), where 54,000 people were bitten by stray dogs in a span of 3.5 years. Municipal waste on streets and at the dumpsite is an important source of food for stray dogs. The ultimate solution to controlling stray dogs is proper waste management. The public has been protesting about this stray dog menace for months now with no waste management solutions in sight, but only partial short term measures like dog sterilization.

Solid Wastes in the Middle East

The high rate of population growth, urbanization and economic expansion in the Middle East is not only accelerating consumption rates but also increasing the generation rate of all  sorts of waste. Bahrain, Saudi Arabia, UAE, Qatar and Kuwait rank in the top-ten worldwide in terms of per capita solid waste generation. The gross urban waste generation quantity from Middle East countries is estimated at more than 150 million tons annually.

Saudi Arabia produced 13 million tons of garbage in 2009. With an approximate population of about 28 million, the kingdom produces approximately 1.3 kilograms of waste per person every day.  According to a recent study conducted by Abu Dhabi Center for Waste Management, the amount of waste in UAE totaled 4.892 million tons, with a daily average of 6935 tons in the city of Abu Dhabi, 4118 tons in Al Ain and 2349 tons in the western region. Countries like Kuwait, Bahrain and Qatar have astonishingly high per capita waste generation rate, primarily because of high standard of living and lack of awareness about sustainable waste management practices.

In Middle East countries, huge quantity of sewage sludge is produced on daily basis which presents a serious problem due to its high treatment costs and risk to environment and human health. On an average, the rate of wastewater generation is 80-200 litres per person each day and sewage output is rising by 25 percent every year. According to estimates from the Drainage and Irrigation Department of Dubai Municipality, sewage generation in the Dubai increased from 50,000 m3 per day in 1981 to 400,000 m3 per day in 2006.

Waste-to-Energy Prospects

Municipal solid waste in the Middle East is mainly comprised of organics, paper, glass, plastics, metals, wood etc. Municipal solid waste can be converted into energy by conventional technologies (such as incineration, mass-burn and landfill gas capture) or by modern conversion systems (such as anaerobic digestion, gasification and pyrolysis).

At the landfill sites, the gas produced by the natural decomposition of MSW is collected from the stored material and scrubbed and cleaned before feeding into internal combustion engines or gas turbines to generate heat and power. In addition, the organic fraction of MSW can be anaerobically stabilized in a high-rate digester to obtain biogas for electricity or steam generation.

Anaerobic digestion is the most preferred option to extract energy from sewage, which leads to production of biogas and organic fertilizer. The sewage sludge that remains can be incinerated or gasified/pyrolyzed to produce more energy. In addition, sewage-to-energy processes also facilitate water recycling.

Thus, municipal solid waste can also be efficiently converted into energy and fuels by advanced thermal technologies. Infact, energy recovery from MSW is rapidly gaining worldwide recognition as the 4th R in sustainable waste management system – Reuse, Reduce, Recycle and Recover.

Waste Management in Iraq

Iraq is one of the most populous Arab countries with population exceeding 32 million. Rapid economic growth, high population growth, increasing individual income and sectarian conflicts have led to worsening problem of solid waste management problem in Iraq. The country is estimated to produce 31,000 tons of solid waste every day with per capita waste generation exceeding 1.4 kg per day. Baghdad alone produces more than 1.5 million tons of solid wastes each year.

Rapid increase in waste generation is putting tremendous strain on Iraqi waste handling infrastructure which have heavily damaged after decades of conflict and mismanagement. In the absence of modern and efficient waste handling and waste disposal infrastructure most of the wastes are disposed in unregulated landfills across Iraq, with little or no concern for both human health and environment. Spontaneous fires, groundwater contamination, surface water pollution and large-scale greenhouse gas emissions have been the hallmarks of Iraqi landfills.

The National Solid Waste Management Plan (NSWMP) for Iraq was developed in 2007 by collaboration of international waste management specialist. The plan contains the recommendations for development and which explains the background for decisions.

The plan states that Iraq will build 33 engineered landfills with the capacity of 600 million m3 in all of the 18 governorates in Iraq by 2027. In addition to constructing landfills the plan also focuses on the collection and transportation, disposable, recycling and reuses systems. Environment education was also taken into consideration to ensure provision of educational system which supports the participation of both communities and individuals in waste management in Iraq.

Besides Iraqi national waste management plan, the Iraqi ministry of environment started in 2008 its own comprehensive development program which is part of the ministry of environment efforts to improve environmental situation in Iraq. Ministry of Municipalities and Public Work, in collaboration with international agencies like UN Habitat, USAID, UNICEF and EU, are developing and implementing solid waste management master plans in several Iraqi governorates including Kirkuk, Anbar, Basra, Dohuk, Erbil, Sulaimaniya and Thi Qar.

Recent Progress

Kirkuk was the first city in Iraq to benefit from solid waste management program when foreign forces initiated a solid-waste management program for the city in 2005 to find an environmentally safe solution to the city’s garbage collection and disposal dilemma. As a result the first environmentally engineered and constructed landfill in Iraq was introduced in Kirkuk In February 2007. The 48-acre site is located 10 miles south of Kirkuk, with an expected lifespan of 10–12 years and meets both the U.S. Environmental Protection Agency and European Union Landfill Directive standards.

The Iraqi city of Basra also benefited from international aid with the completion of the first landfill that is compliant with international environmental standards has been completed. Basra solid waste management program developed by UNICEF will not only restore efficient waste collection systems in the city but will also create informal “recycling schools” that will help in spreading environmental awareness in in the city’s society by launching a campaign to educate the public about effective waste disposal practices.

In addition, Basra city program plans to establish a regional treatment and disposal facility and initiate street sweeping crews. Basrah city waste management program is part of the UNICEF program supported by the European Union to develop Iraq’s water and sanitation sector.

Erbil’s solid waste management master plan has also been developed by UNICEF with funding from the European Union. Recently a contract was signed by the Kurdistan Region’s Ministry of Municipalities and Tourism and a Canadian company to recycle the city’s garbage which will involve the construction of two recycling plants in the eastern and western outskirts of Erbil.

UNICEF has also developed a master plan to improve the management of solid waste in Dohuk Governorate which has been finalized in June 2011. Solid waste management master plans for Anbar, Sulaimaniya and Thi Qar governorates are also a part of UNICEF and EU efforts to attaining Iraq’s Millennium Development Goal targets of ensuring environmental sustainability by 2015.

Even though all of the effort by the international organizations are at local level and still not enough to solve solid waste management problem in Iraq, however these initiatives have been able to provide a much needed information regarding the size of the issue and valuable lessened learned used later by the Iraqi government to develop the Iraqi national waste management plan with the support of organizations such as UN Habitat, UNDG Iraq Trust Fund and USAID. The Iraqi national waste management plan is expected to ease the solid waste management problem in Iraq in the near future.

Sugarcane Trash as Biomass Resource

cane-trashSugarcane trash (or cane trash) is an excellent biomass resource in sugar-producing countries worldwide. The amount of cane trash produced depends on the plant variety, age of the crop at harvest and soil and weather conditions. Typically it represents about 15% of the total above ground biomass at harvest which is equivalent to about 10-15 tons per hectare of dry matter. During the harvesting operation around 70-80% of the cane trash is left in the field with 20-30% taken to the mill together with the sugarcane stalks as extraneous matter.

Cane trash’s calorific value is similar to that of bagasse but has an advantage of having lower moisture content, and hence dries more quickly. Nowadays only a small quantity of this biomass is used as fuel, mixed with bagasse or by itself, at the sugar mill. The rest is burned in the vicinity of the dry cleaning installation, creating a pollution problem in sugar-producing nations.

Cane trash and bagasse are produced during the harvesting and milling process of sugarcane which normally lasts between 6 to 7 months. Cane trash can potentially be converted into heat and electrical energy. However, most of the trash is burned in the field due to its bulky nature and high cost incurred in collection and transportation.

Cane trash could be used as an off-season fuel for year-round power generation at sugar mills. There is also a high demand for biomass as a boiler fuel during the sugar-milling season. Sugarcane trash can also converted in biomass pellets and used in dedicated biomass power stations or co-fired with coal in power plants and cement kilns.

Burning of cane trash creates pollution in sugar-producing countries

Burning of cane trash creates pollution in sugar-producing countries

Currently, a significant percentage of energy used for boilers in sugarcane processing is provided by imported bunker oil. Overall, the economic, environmental, and social implications of utilizing cane trash in the final crop year as a substitute for bunker oil appears promising. It represents an opportunity for developing biomass energy use in the Sugarcane industry as well as for industries / communities in the vicinity.

Positive socio-economic impacts include the provision of large-scale rural employment and the minimization of oil imports. It can also develop the expertise necessary to create a reliable biomass supply for year-round power generation.

Recovery of Cane Trash

Recovery of cane trash implies a change from traditional harvesting methods; which normally consists of destroying the trash by setting huge areas of sugarcane fields ablaze prior to the harvest.  There are a number of major technical and economic issues that need to be overcome to utilize cane trash as a renewable energy resource. For example, its recovery from the field and transportation to the mill, are major issues.

Alternatives include the current situation where the cane is separated from the trash by the harvester and the two are transported to the mill separately, to the harvesting of the whole crop with separation of the cane and the trash carried out at the mill. Where the trash is collected from the field it maybe baled incurring a range of costs associated with bale handling, transportation and storage. Baling also leaves about 10-20% (1-2 tons per hectare) of the recoverable trash in the field.

A second alternative is for the cane trash to be shredded and collected separately from the cane during the harvesting process. The development of such a harvester-mounted cane trash shredder and collection system has been achieved but the economics of this approach require evaluation. A third alternative is to harvest the sugarcane crop completely which would require an adequate collection, transport and storage system in addition to a mill based cleaning plant to separate the cane from the trash .

A widespread method for cane trash recovery is to cut the cane, chop into pieces and then it is blown in two stages in the harvester to remove the trash. The amount of trash that goes along with the cane is a function of the cleaning efficiency of the harvester. The blowers are adjusted to get adequate cleaning with a bearable cane loss.

On the average 68 % of the trash is blown out of the harvester, and stays on the ground, and 32 % is taken to the mill together with the cane as extraneous matter. The technique used to recover the trash staying on the ground is baling. Several baling machines have been tested with small, large, round and square bales. Cane trash can be considered as a viable fuel supplementary to bagasse to permit year-round power generation in sugar mills.

Thus, recovery of cane trash in developing nations of Asia, Africa and Latin America implies a change from traditional harvesting methods, which normally consists of destroying the trash by setting huge areas of cane fields ablaze prior to the harvest. To recover the trash, a new so-called “green mechanical harvesting” scheme will have to be introduced. By recovering the trash in this manner, the production of local air pollutants, as well as greenhouse gases contributing to adverse climatic change, from the fires are avoided and cane trash could be used as a means of regional sustainable development.

Cane Trash Recovery in Cuba

The sugarcane harvesting system in Cuba is unique among cane-producing countries in two important respects. First, an estimated 70 % of the sugarcane crop is harvested by machine without prior burning, which is far higher than for any other country. The second unique feature of Cuban harvesting practice is the long-standing commercial use of “dry cleaning stations” to remove trash from the cane stalks before the stalks are transported to the crushing mills.

Cuba has over 900 cleaning stations to serve its 156 sugar mills. The cleaning stations are generally not adjacent to the mills, but are connected to mills by a low-cost cane delivery system – a dedicated rail network with more than 7000 km of track. The cleaning stations take in green machine-cut or manually cut cane. Trash is removed from the stalk and blown out into a storage area. The stalks travel along a conveyor to waiting rail cars. The predominant practice today is to incinerate the trash at the cleaning station to reduce the “waste” volume.

Solid Waste Management in Morocco

solid_waste_moroccoSolid waste management is one of the major environmental problems threatening the Kingdom of Morocco. More than 5 million tons of solid waste is generated across the country with annual waste generation growth rate touching 3 percent. The proper disposal of municipal solid waste in Morocco is exemplified by major deficiencies such as lack of proper infrastructure and suitable funding in areas outside of major cities.

According to the World Bank, it was reported that before a recent reform in 2008 “only 70 percent of urban wastes was collected and less than 10 percent of collected waste was being disposed of in an environmentally and socially acceptable manner. There were 300 uncontrolled dumpsites, and about 3,500 waste-pickers, of which 10 percent were children, were living on and around these open dumpsites.”

It is not uncommon to see trash burning as a means of solid waste disposal in Morocco.  Currently, the municipal waste stream is disposed of in a reckless and unsustainable manner which has major effects on public health and the environment.  The lack of waste management infrastructure leads to burning of trash as a form of inexpensive waste disposal.  Unfortunately, the major health effects of burning trash are either widely unknown or grossly under-estimated to the vast majority of the population in Morocco.

The good news about the future of Morocco’s MSW management is that the World Bank has allocated $271.3 million to the Moroccan government to develop a municipal waste management plan.  The plan’s details include restoring around 80 landfill sites, improving trash pickup services, and increasing recycling by 20%, all by the year 2020. While this reform is expected to do wonders for the urban population one can only hope the benefits of this reform trickle down to the 43% of the Moroccan population living in rural areas, like those who are living in my village.

Needless to say, even with Morocco’s movement toward a safer and more environmentally friendly MSW management system there is still an enormous population of people including children and the elderly who this reform will overlook.   Until more is done, including funding initiatives and an increase in education, these people will continue to be exposed to hazardous living conditions because of unsuitable funding, infrastructure and education.

Progress of Waste-to-Energy in the USA

Rising rates of consumption necessitate an improved approach to resource management. Around the world, from Europe to Asia, governments have adapted their practices and policies to reflect renewability. They’ve invested in facilities that repurpose waste as source of energy, affording them a reliable and cheap source of energy.

This seems like progress, given the impracticality of older methods. Traditional sources of energy like fossil fuels are no longer a realistic option moving forward, not only for their finite nature but also within the context of the planet’s continued health. That said, the waste-to-energy sector is subject to scrutiny.

We’ll detail the reasons for this scrutiny, the waste-to-energy sector’s current status within the United States and speculations for the future. Through a concise analysis of obstacles and opportunities, we’ll provide a holistic perspective of the waste-to-energy progress, with a summation of its positive and negative attributes.

Status of Waste-to-Energy Sector

The U.S. currently employs 86 municipal waste-to-energy facilities across 25 states for the purpose of energy recovery. While several have expanded to manage additional waste, the last new facility opened in 1995. To understand this apparent lack of progress in the area of thermochemical treatment of MSW, budget represents a serious barrier.

One of the primary reasons behind the shortage of waste-to-energy facilities in the USA is their cost. The cost of construction on a new plant often exceeds $100 million, and larger plants require double or triple that figure to build. In addition to that, the economic benefits of the investment aren’t immediately noticeable.

The Palm Beach County Renewable Energy Facility is a RDF-based waste-to-energy (WTE) facility.

The U.S. also has a surplus of available land. Where smaller countries like Japan have limited space to work within, the U.S. can choose to pursue more financially viable options such as landfills. The expenses associated with a landfill are far less significant than those associated with a waste-to-energy facility.

Presently, the U.S. processes 14 percent of its trash in waste-to-energy (WTE) plants, which is still a substantial amount of refuse given today’s rate of consumption. On a larger scale, North America ranks third in the world in the waste-to-energy movement, behind the European nations and the Asia Pacific region.

Future of WTE Sector

Certain factors influence the framework of an energy policy. Government officials have to consider the projected increase in energy demand, concentrations of CO2 in the atmosphere, space-constrained or preferred land use, fuel availability and potential disruptions to the supply chain.

A waste-to-energy facility accounts for several of these factors, such as space constraints and fuel availability, but pollution remains an issue. Many argue that the incineration of trash isn’t an effective means of reducing waste or protecting the environment, and they have evidence to support this.

The waste-to-energy sector extends beyond MSW facilities, however. It also encompasses biofuel, which has seen an increase in popularity. The aviation industry has shown a growing dedication to biofuel, with United Airlines investing $30 million in the largest producer of aviation biofuel.

If the interest of United Airlines and other companies is any indication, the waste-to-energy sector will continue to expand. Though negative press and the high cost of waste-to-energy facilities may impede its progress, advances in technology promise to improve efficiency and reduce expenses.

Positives and Negatives

The waste-to-energy sector provides many benefits, allowing communities a method of repurposing their waste. It has negative aspects that are also important to note, like the potential for pollution. While the sector offers solutions, some of them come at a cost.

It’s true that resource management is essential, and adapting practices to meet high standards of renewability is critical to the planet’s health. However, it’s also necessary to recognize risk, and the waste-to-energy sector is not without its flaws. How those flaws will affect the sector moving forward is critical to consider.

Why Going Green is the Best Thing You Can Do for Your Community

college-greenAs we go about our daily lives, it’s always a good idea to think about how we can contribute to the community we belong to in tangible and appreciable ways. Improving our communities from the inside not only allows us to make things easier and more convenient for ourselves, but also for the people we meet and rely upon in our day-to-day. Besides this, it also helps us think of other people’s needs rather than just our own—an essential need if we’re to live happy and productive lives. One of the best ways of improving our communities is, of course, going green: the act of adopting an environmentally-friendly lifestyle. This means taking active steps to minimize our carbon footprint and reducing waste.

It doesn’t have to start out big—we can start with the smaller things, and work our way up from there. Instead of buying new printer ink cartridges, for example, we can try using compatible ink cartridges instead. These are ink cartridges that are made the same way as new printer ink cartridges, but cost way less to make than branded ones. Instead of throwing away our old or obsolete electronics and electrical goods, we can look into getting them repaired. Another example of that is to refurbish old drones instead of buying new.

By taking up these eco-friendly practices, our communities will become cleaner, more energy-efficient, and much healthier places to live in, alongside other very practical and tangible benefits that everyone will appreciate.

Not convinced? Well, hopefully listing out those benefits in full below will convince you. Read on as we go through all the biggest reasons why going green is the best thing you can do for your community.

A healthier community

Enacting green and eco-friendly practices in your community will have the immediate effect of making it healthier for the individuals who live in it, enabling them to live longer, happier, and more productive lives. This can be considered as the most important benefit, seeing as we can tie so many health conditions and diseases to having an environmentally-negligent lifestyle. By going green, you can avoid these potential risks from taking hold in your community.

For example, recycling and minimizing trash or garbage helps makes your immediate surroundings cleaner and more attractive to look at. This causes disease-carrying pests such as insects and rodents to be driven away from your community, which then results in less people catching those diseases.

Another example is having the vehicles in your community switch to more eco-friendly fuel types will result in cleaner and healthier air, as well as reduce the chances of children and the elderly from getting respiratory diseases. These and a whole lot more are attainable by going green.

Savings on utility bills and other expenses

One of the main tenets of going green is to be conservative when it comes to the usage of utilities, such as electricity, gas, water, and so on. It goes without saying that using too much of these obviously strains the environment.

For example, the excessive and unnecessary use of electricity when it’s clearly not needed increases the power demand from power plants, which in turn increases the amount of fuel being used to supply that energy. This uses up our remaining fossil fuels at an alarming rate, while also depositing more pollutants into the atmosphere and environment. The same goes for gas and other utilities.

By being smarter and more conscious about using these precious resources in our homes, we can reduce the impact we have on the environment by quite a large degree. It will help ease the strain our environment is currently experiencing in providing us these resources and ensure that they don’t run out as quickly as they would have if we continued being unnecessarily wasteful with our usage.

Besides this, conserving energy and resources also helps us save on our utility bills. Obviously, the less power, water, and gas we use in our day-to-day, the less we’ll be charged when our monthly bills come in. Up to 20% of expanses per household, according to the US Environmental Protection Agency, are saved, especially if we adopt changes such as using solar panels rather than relying on our electrical grid. This is a huge chunk of money no matter how you slice it!

Durable and stronger homes and and structures

Let’s not mince words about it: eco-friendly and environmentally-conscious “green” products are more expensive than the brands that have an easier time fitting into our budget. However, we must consider that the former is also much more durable than the latter, which will inevitably result in a lot of savings in the long run.

This can be seen the most in construction building materials, especially those involved in the building and repair of homes. For example, recycled decking, which is made from recycled plastic and wooden fibers, have been tested to last five times longer than traditional decking.

Bamboo, a self-sustaining perennial grass that can grow up to three feet in 24 hours, is lighter than most building materials and yet has greater compressive strength than brick and concrete. The best part about it is that it grows faster than it can be harvested, meaning that there’s no danger of running out of it anytime soon, no matter how extensively it’s used.

By creating your community’s homes and structures using these eco-friendly materials, you can help save the environment while also ensuring that the homes and shelters will last for as long as they’re needed.

A self-sufficient community

It’s a fact of life that we have to rely on big companies to get us the modern conveniences and essentials we need to get through the day. However, by going green, we can help reduce our reliance on them and become more independent in our lives.

For example, taking the initiative to install solar panels in every home in your community will allow it to become less dependent on the power that companies provide you with electricity. With enough time, your community will be generating enough excess power that the same company will be paying you for that excess. There’s also the fact that if something goes wrong with the power plant, your community won’t be subjected to the same annoying and disruptive blackout that other surrounding neighborhoods will be, as you’ll have enough solar power to last you the entire time.

Let’s say you’re not quite at that level yet, in terms of going green. How about supporting your local markets rather than your nearby supermarket? By doing so, you ensure that the food-growing sector of your community continues to earn a living while also retaining the ability to keep growing natural and organic produce. Doing so also cuts down on harmful emissions, as you won’t have to travel by car just to get the fresh food you need. Your community retains its independence while helping the environment.

Conclusion

There are many ways to improve one’s community from the inside, with one of the major and more effective ones being able to adopt eco-friendly and environmentally-conscious practices. By doing so, not only does the community benefit hugely in the end in terms of health, sustainability, and independence from big companies, but the environment as well.

Recycling Outlook for Latin America

Latin America has one of the highest rates of urbanization in the world (80% urban population). By 2050, 90% of Latin America’s population will live in urban areas. This high rate of urbanization coupled with the global economic crisis has resulted in a waste management crisis. Municipalities find themselves unable to keep up with providing services and infrastructure to the urban populations.

Some cities in Latin America are facing this challenge by integrating the informal sector recyclers who are already active in their cities into the municipal solid waste management systems. In many cities, these “recicladores”, “cartoneros” or “catadores” (a few of the many names used for these workers in the region) are responsible for up to 90% of the recyclable waste recovered from the waste stream. Their work reduces municipal waste transportation costs, increases landfill lifetimes and supports the recycling chain throughout the region.

State of the Affairs

Every location presents its own challenges–there is no one-size-fits-all solution for integrated solid waste management systems–but relevant lessons can be drawn from both failed attempts and successful examples of informal sector integration in recycling systems in Latin America.

There are often two very different contexts within cities. In low-income neighborhoods waste collection services are often not provided and individuals and families accumulate and then sell their recyclables for additional income. In contrast, residents in high income neighborhoods do receive a waste collection service and their motivation for recycling is often related to greater levels of environmental awareness. It is important to consider these differences when designing waste management solutions.

Imported systems, and even locally derived systems based on examples from the Global North, generally focus on only one waste management scenario, making it difficult to manage the multiple competing scenarios in many cities in Latin America. There is often a bias towards the automation of waste management services, with the application of the high technology solutions used in the Global North. Regardless of the practicality or scientific evidence against certain high tech solutions, these are often sought after, thought to raise the bar of the city, to make it appear more sophisticated and modern. This leads to a misconception that working with informal sector is a step backwards in terms of urban development and modernization.

Conflicts between private waste management companies, the municipality and informal recyclers are common. The waste management companies do not want pickers on the landfill and wastepickers then go to the municipality for help. However, municipalities usually have very little experience to support the integration of formal and informal waste sectors. There are opportunities for new systems to emerge within this conflict. For example, during a similar conflict in Mexicali, Mundo Sustentable, with the help of Danone, intervened to help a private company work with the informal waste sector and improve recycling rates.

The Way Forward

In Latin America, there is a great opportunity to increase recycling rates by using labour-intensive solutions, which create jobs and support the development of a better urban environment in the cities. Municipal governments should be an integral part of these processes as they are usually responsible for solid waste management at local level. The key to catalyzing informal recycling sector integration will be the development and dissemination of successful examples.

Informal recyclers provide important a range of services to municipalities (such as waste collection and recovery in communities that would not otherwise have access to them), as well as cost savings (for example, the extension of landfill life and reduced transport costs), yet are rarely compensated for these benefits. Informal recyclers further form the foundation of an entire recycling supply chain, which ultimately benefits formal businesses, and often aliment entire local economies.

Challenges to Overcome

Municipal governments are often hesitant to work with informal actors, who are frequently seen as an unknown quantity. Yet often in the process of working and developing relations with informal recycler groups, their concerns diminish and they may actually exhibit enthusiasm. Likewise, the recyclers may gain in confidence and professionalism in their experience of formalization.

One major challenge facing efforts to integrate the informal sector in developing countries is the desire of some local governments to adopt technological solutions that appear more “modern.” In much of Latin America, however, low-cost, low-tech solutions tend to be more viable and sustainable.

The main difference between Latin America and the countries of the Global North is that solid waste management is a labor intensive system. It is made up of workers and hence has an important social component. The ILO estimated there is 24 million of people working in the global recycling supply chain, but those at the bottom of the pyramid, the wastepickers, make up 80%. They remain the lowest paid even though they make an enormous contribution to their cities.

It is important to understand that highly sophisticated, high technology systems are not required for effective resource recovery. In many cities in Latin America between 80-90% of everything that is recycled is recovered by the informal recycling sector.

Despite the fact that there is little or no public investment in waste management or recycling infrastructure, cities with an active informal sector reach twice the rate of fully formalized municipal solid waste management systems. As an example, the recycling rate is 60% in Cairo, while in Rotterdam (and other cities in the Global North) recycling levels only reach 30%, even with a high public investment in the system (UN Habitat, 2010).

When designing infrastructure and waste management systems we must consider not only the waste management and resource recovery needs but also the social side of the system. In order to be effective, efforts to upgrade waste management services should go hand in hand with efforts to formalise and integrate the informal sector.

Bogota – A Success Story

An example of a recent success story is that after 27 years of struggle, the waste pickers in Bogota, Colombia have managed to change the government’s outlook on their work and their existence. They are now included in the system and are paid per tonne of waste collected, just like any other private sector collection and waste management company would be. They have become recognized as public service providers, acknowledged for their contribution to the environment and public health of the city.

The key challenge is to be much more creative and understand that in order to improve the working conditions of waste pickers and in order to increase recycling rates, we don’t need high technology. We need a systemic approach and this can be very simple sometimes infrastructure as simple as a roof [on a sorting area] can be effective in improving working conditions.

Note: This excerpt is being published with the permission of our collaborative partner Be Waste Wise. The original excerpt and its video recording can be found at this link