Major Considerations in Biopower Projects

In recent years, biopower (or biomass power) projects are getting increasing traction worldwide, however there are major issues to be tackled before setting up a biopower project. There are three important steps involved in the conversion of biomass wastes into useful energy. In the first step, the biomass must be prepared for the energy conversion process. While this step is highly dependent on the waste stream and approach, drying, grinding, separating, and similar operations are common.

In addition, the host facility will need material handling systems, storage, metering, and prep-yard systems and biomass handling equipment. In the second step, the biomass waste stream must be converted into a useful fuel or steam. Finally, the fuel or steam is fed into a prime mover to generate useful electricity and heat.

One of the most important factors in the efficient utilization of biomass resource is its availability in close proximity to a biomass power project. An in-depth evaluation of the available quantity of a given agricultural resource should be conducted to determine initial feasibility of a project, as well as subsequent fuel availability issues. The primary reasons for failure of biomass power projects are changes in biomass fuel supply or demand and changes in fuel quality.

Fuel considerations that should be analyzed before embarking on a biomass power project include:

  • Typical moisture content (including the effects of storage options)
  • Typical yield
  • Seasonality of the resource
  • Proximity to the power generation site
  • Alternative uses of the resource that could affect future availability or price
  • Range of fuel quality
  • Weather-related issues
  • Percentage of farmers contracted to sell residues

Accuracy is of great importance in making fuel availability assumptions because miscalculations can greatly impact the successful operation of biomass power projects. If biomass resource is identifies as a bottle-neck in the planning stage, a power generation technology that can handle varying degrees of moisture content and particle size can be selected.

Technologies that can handle several fuels in a broad category, such as agricultural residues, provide security in operation without adversely affecting combustion efficiency, operations and maintenance costs, emissions levels, and reliability.

Consistent and reliable supply of biomass is crucial for any biomass project

Identification of potential sources of biomass fuel can be one of the more challenging aspects of a new biomass energy project. There are two important issues for potential biomass users:

  • Consistent and reliable biomass resource supply to the facility
  • Presence of harvesting, processing and supply infrastructure to provide biomass in a consistent and timely manner

Biomass as an energy source is a system of interdependent components. Economic and technical viability of this system relies on a guaranteed feedstock supply, effective and efficient conversion technologies, guaranteed markets for the energy products, and cost-effective distribution systems.

The biomass energy system is based on the following steps:

  • Biomass harvesting (or biomass collection of non-agricultural waste)
  • Preparation of biomass as feedstock
  • Conversion of biomass feedstock into intermediate products.
  • Transformation of intermediates into final energy and other bio-based products
  • Distribution and utilization of biofuels, biomass power and bio-based products.

More Reasons To Check Out Alternative Energy Sources

In recent years, the world has seen significant economic progress, which greatly relied on energy fueled by coal and petroleum among others. With the continuously growing demand for energy, it is a fact that these energy sources may be depleted in the near future. Apart from this, there are several other reasons why humankind already needs to find alternative energy sources.

Global Warming

It is a known fact that different manufacturing processes and human activities, such as using vehicles, cause pollution in the atmosphere by releasing carbon dioxide. Carbon dioxide traps heat in the earth, and this phenomenon is known as global warming. Global warming has several harmful impacts such as stronger and more frequent storms, as well as drought and heat waves. Renewable energy sources such as wind, solar, geothermal, hydroelectric, and biomass to name a few, all generate minimal global warming emissions.

Wind power, for instance, has the capability to supply energy with a significantly lower emission compared to burning coal for fuel. This is the reason why wind energy is more beneficial compared to carbon-intensive energy sources. Still, the emissions generated by wind power are even lower compared to other renewable energy sources such as solar, geothermal, and hydroelectric power sources. This makes a huge potential for wind power to sustain the world’s energy demands, while preserving the environment.

Public Health

It goes without saying that the pollution caused by burning coal and fuel not only has an environmental impact, but it also has a significant effect on public health. Various diseases and ailments can be attributed to pollution, which usually affects the respiratory tract. Contaminated water also causes various bacterial infections. Wind power, solar energy, and hydroelectric systems have the capability to generate electricity without emitting air pollutants.

Additionally, wind and solar energy sources do not need water to operate, thereby, eliminating the probability of polluting water resources. Clean air and water that is free from pollutants, will have a significant positive impact on public health.

Constant Energy Source

While coal and fossil fuels are on the threshold of depletion, renewable energy sources are inexhaustible. Wind can be a constant energy source and no matter how high the demand for energy will be, the wind will not be depleted. In the same manner, as long as the sun shines bright on earth, there will always be an abundant solar energy source.

Fast-moving water that can be translated into hydroelectric energy, the earth’s heat that can be converted into a geothermal power source, as well as abundant plant matter that can be used as biomass, can all be constantly replenished. These can never be fully exhausted no matter how great the energy demand will be. The utilization of a combination of each of these energy sources will prove to be even more beneficial. Additionally, with its continued use, there will no longer be a need for combustible energy sources.

Lower Energy Costs

The cost of electricity continues to be a burden on the earth’s greater population. The use of renewable energy sources to light up the earth is considerably cheaper and inexpensive compared to the cost of burning fossil fuels for electricity and other energy needs. Apart from a cheaper cost, renewable energy sources can help stabilize to cost of energy in the long run, with an unlimited supply being able to cater to greater demand. Don’t forget to obtain more information on the size of solar energy system you need for your home.

While it cannot be denied that setting up clean energy technologies comes with a cost, it can be noted that the cost of its operation is significantly lower. Conversely, the cost of coal and fossil fuels for energy consumption fluctuates over a wide range and is greatly affected by the economic and political conditions of its country of origin.

Economic Benefits

Fossil fuel technologies, often, revolve around the capitalistic market. Hence, the use of combustible fuels is often linked to unfavorable labor conditions, and even child labor and slavery. On the other hand, the use of renewable energy sources provides decent jobs, contributing to several economic benefits and aids in decarbonizing the future.

For instance, workers are needed to install and maintain solar panels. In the same manner, wind farms employ technicians for maintenance. Thus, jobs are created directly in parallel with the unit of energy produced. This means that more jobs will be produced if more renewable energy sources are utilized.

Reliability

Clean energy sources, specifically wind and solar power, are less susceptible to large-scale failures. The reason behind this is that both wind and solar power both employ distributed and modular systems. This means that electricity will not be totally cut off in instances of extreme weather conditions because the energy sources powering up the electricity is spread out over a wider geographical area. In the same manner, there will still be a continuous supply of energy even if certain equipment in the entire system is damaged because clean fuel technologies are made up of modules such as a number of individual wind turbines or solar panels.

With all the reasons to check out alternative energy sources, it still holds true that there remain several barriers that hinder the full implementation of renewable energy technologies. Some of these challenges are capital costs because of reliability misconceptions, as well as a difficult market entry due to an unequal playing field.

Because renewable energy sources are cheap to operate, the bulk of the expenses in its implementation is building the technology. Thereby, the rate of return for capitalists and investors in the market entails a longer waiting period. Adding to this barrier is the hidden political agenda that most governments need to overcome. Many governments offer grants to help with this growth and rate or return.

Economic progress and advancement in technology are not at all bad. On the contrary, it has brought forth a lot of benefits such as cures for ailments and diseases, resources for deep-sea or space explorations, as well as meaningful collaboration and communication. However, this progress came with a price, and unfortunately, it’s the world’s energy resources that are on the brink of exhaustion. Hence, mitigation has been already necessary and finding alternative energy sources is just one of the probable solutions.

Will Solar Roadways Ever Be Possible?

In the United States, the primary mode of transport is cars — and when you have many people driving, you need a lot of road. In total, there are around four million miles of paved road in the United States. According to one estimate, that’s more than 13,000 square miles of paved land.

These roads have a big impact on their local environment before, during and after construction. First, there’s a carbon cost to laying asphalt. After construction, when it rains, the impervious surface of the road can carry polluted rainwater directly to storm drains — where the water will run off into the environment.

There’s also evidence that expanding roads encourages people to drive more often, increasing emissions over time.

Without a major shift in the U.S., these roads are likely to stick around well into the future. As a result, environmentalists and engineers want to find ways to take advantage of all that open space and offset some of the environmental cost of roads.

solar-highway

Solar roadways — roads outfitted with special solar panels — have arisen as one possible solution to reduce the environmental impact of roads. If you outfit all these roads with solar energy, you can use that paved land to generate energy. At first glance, it looks like a good idea — but would it work in practice?

Why People Are Interested in Solar Roadways

While solar roadway technology has been theoretically possible for a while, interest in the idea has grown significantly over the past decade. This new interest is likely due in part to the growing availability of new solar technology like home solar systems and batteries.

Changes in road materials may have also made the idea seem more practical. In recent years, rising asphalt prices have many cities turning to concrete for their roads. Concrete is somewhat tougher and more durable than asphalt, meaning concrete roads may be a better candidate for projects like solar roadways, where damage to the road could loosen or destroy embedded solar panels.

Growing knowledge about the environmental impact of travel by car may have also inspired recent interest in solar road projects. After all, if we can find a way to make roads eco-friendly, we won’t need to worry as much about their potential long-term effects on the climate and the environment.

The Challenges to Overcome

No one has attempted a large-scale solar roadway yet — but the first few experimental applications of the technology have not yielded encouraging results.

The Wattway solar road project, built in the Normandy region of France in 2016, lined a full kilometer (0.62 miles) of road with 2,800 photovoltaic solar panels. The project engineers designed panels coated with a special resin containing silicone. The company behind Wattway said the resin was strong enough to protect the panels from the weight of an eighteen-wheeler.

While sound in theory, the project was a disaster in practice. The resin was able to mostly protect the panels from traffic at first, but the sound created by cars passing over the panels was so loud that the village had to limit local speed limits to just over 40 miles per hour.

Three years after installation, there are solar panels peeling off the road and the protective resin is splintered and shattered in many places.

In terms of energy production, the project was also a bust. While solar panels are decent energy sources in well-lit regions of the world, Normandy only sees around 44 days of full sunlight every year. The region’s strong weather, in addition to potentially damaging the panels, further limited the power the panels could collect.

wattway-solar-road-project

On one hand, the Wattway project may seem like a failure of planning. The choice of region, road and materials were all suboptimal. The combination of these mistakes could easily have been enough to sink the project.

However, the Wattway project also shows the serious challenges that engineers will overcome to make solar roadways and other “solar surfaces” workable. To start with, designers will need to use panel materials that are strong, resilient to traffic without generating too much noise and easy to maintain. Project planners will also have to select the right region for the roadway and find a road with the right angle towards the sun for maximum energy production.

What Will Future Solar Technology Look Like?

Growing demand for clean sources of energy will prompt engineers and designers to continue searching for new applications for solar panels. Solar roadways, however, seem likely to remain theoretical in the near future. The challenges of road-ready solar panels and the limited amount of suitable area will probably mean that solar engineers will look elsewhere before turning to projects like a solar panel highway.

Why Biofuels Should Be a Key Part in America’s Future

Biofuels are one of the hottest environmental topics, but they aren’t anything new. When discussing these fuels, experts frequently refer to first, second-and third-generation biofuels to differentiate between more efficient and advanced ones currently in development and more traditional biofuels in use for decades.

Biofuels are increasingly being used to power vehicles around the world

First-generation biofuels are things like methanol, ethanol, biodiesel and vegetable oil, while second-generation biofuels are produced by transforming crops into liquid fuels using highly advanced chemical processes, such as mixed alcohols and biohydrogen. Third-generation, or “advanced” biofuels, are created using oil that is made from algae or closed reactors and then refined to produce conventional fuels such as ethanol, methane, biodiesel, etc.

Cleaner Air and Less Impact on Climate Change

As biofuels come from renewable materials, they have less of an impact on climate change as compared to gasoline, according to multiple studies. Ethanol in gasoline has been helping to decrease smog in major cities, keeping the air cleaner and safer to breathe.

Starch-based biofuels can reduce carbon dioxide emissions by around 30- to 60-percent, as compared to gasoline, while cellulosic ethanol can lessen emissions even further, as much as 90 percent.

Reduced Danger of Environmental Disaster

Can you imagine buying one of the oceanfront Jacksonville condos in Florida, looking forward to enjoying peaceful beach strolls every morning only to find injured or killed animals and globs of oil all over the sand? Not exactly the vision of paradise you dreamed of.

A major benefit of using biofuels is the risk of environmental disaster is dramatically reduced. The 2010 Deepwater Horizon Spill that occurred in the Gulf of Mexico released millions of gallons of oil. It not only cost BP nearly $62 billion but caused extensive damage to wildlife and the environment. Biofuels are much safer. For example, a corn field won’t poison the ocean.

More Jobs and an Economic Boom

Numerous studies, including one conducted by the Renewable Fuels Association (RFA), have found that biofuels lead to more jobs for Americans. In 2014, the ethanol industry was responsible for nearly 84,000 direct jobs and over 295,000 indirect and induced jobs – all jobs that pay well and are non-exportable. The biofuels industry in the USA also added nearly $53 billion to the national GDP, $27 billion to the national GDP and over $10 billion in taxes, stimulating local, state and national economies.

Many experts predict that these figures will increase with significant job creation potential in biorefinery construction, operation and biomass collection. If the potential for producing cellulosic ethanol from household waste and forestry residues were utilized at commercial scale, even more jobs are likely to be added.

Energy Independence

When a nation has the land resources to grow biofuel feedstock, it is able to produce its own energy, eliminating dependence on fossil fuel resources. Considering the significant amount of conflict that tends to happen over fuel prices and supplies, this brings a net positive effect.

Things to Know About Backup Batteries for Renewable Energy

Renewable energy is a force that can help combat climate change. However, without the right proactive steps, there can be pitfalls. For instance, solar power is becoming more widely available but can use some improvements. Solar backup batteries are a critical solution when renewable energy fails.

solar-battery-storage

The Need for Renewability

Renewability is one of the keys to stopping and reversing the climate crisis. It’s time to phase out fossil fuels and harmful environmental practices and focus on sustainable energy sources. There are various deadlines when people must act, and stopping climate change becomes more pressing every day.

However, while renewable energy is a solution, these sources may need a backup system. Often, resources like solar and wind energy are durable and hold up through harsh weather and high demands. When they fail, though, it can leave millions without power. A full renewable system requires constant clean energy.

During the 2020 California wildfires, residents reported their photovoltaic (PV) panels were no longer working, and they were losing power. The ash from the fires was covering the panels, and the smog in the sky was disrupting the transfer of sunlight. During instances like these, a backup plan is necessary.

Battery power is the solution. If solar fails, then the backup system can kick in and keep residents’ homes, schools and companies running.

Integrating Backup Batteries

A backup battery system will most prominently help solar energy setups. While PV panels are versatile, they can nevertheless use assistance. Microgrids will especially benefit from solar backup batteries. The ultimate goal is to keep emissions low at all times — but people will still need power. If a solar system fails, like those in California during the wildfires, then it’s not operating on a fully renewable level.

Experts can integrate batteries into the electrical setup with the proper enclosing tools to prevent surges and stalling. They’ll connect to the lights, HVAC system and other necessities of the building. For schools, internet access may be required to contact parents during blackouts. Businesses may need to keep computers running to prevent data loss.

solar-microgrid

Each system will depend on the supply demands of the location. A smaller home may not need a large network. However, if a solar microgrid powers a university, then the backup battery system will need to account for that demand. Experts must consider the power level of the PV panels, too. That is what will bring solar backup batteries to the next level.

Battery systems can generate power when renewables can’t. It maintains a sustainable impact while still providing people with electricity at all times.

Why It Matters

Renewable energy is groundbreaking. It shows the way forward with no carbon emissions, lower pollution and benefits for public health as well as the environment. While there can be power outages and mishaps with fossil fuels, renewable energy can draw more people in with foolproof generation.

Batteries don’t produce any emissions, so the renewability continues — as does the consistent supply of power. Outages and surges can become less common and not as much of a setback if they do happen.

The partnership of batteries and renewable energy opens up the future. From here, experts will want to work on scalability. Microgrids are a prime area for integrating backup batteries with renewable energy. On larger scales, though, the possibilities could be endless.

Better system setups mean bigger solar and wind farms could also use battery power. While these operations have less chance of failure due to the amount of energy going into them, batteries could still facilitate optimal energy flows and provide backup assistance.

In Development

With energy companies expanding their renewable energy services and integration, every step must receive a backup. Batteries are long-lasting and durable. Adding them to renewable energy setups will create a more foolproof dynamic — one that’s sustainable and always providing power.

Factors to Consider Before Subscribing to Community Solar

So you’ve heard of community solar and are now thinking of subscribing to one. Naturally, you want to know if you are qualified for a solar farm subscription. In this article, we will discuss factors that you need to consider before you sign up for a community solar program.

What is Community Solar?

Community solar or shared solar is one of the biggest renewable energy trends to have emerged in the past decade. Compared to residential solar which is mostly individualistic, a community solar project allows several neighboring households to tap into a single solar farm installation.

what-is-community-solar

Instead of installing panels on residential roofs or backyards, solar farm owners set them up at a central location like an open field or even an open body of water. Since it is subscription-based, you will simply receive a portion of the solar energy generated by these farms. Usually, this power will be coursed through your existing power lines, which means you don’t have to get any new gear just to enjoy your subscription. Sounds promising, right?

Am I Qualified for a Subscription?

Just like traditional solar panels, though, community solar programs are not for everyone. Here are some factors that make you a great candidate for community solar:

1. Your utility provider has a solar project

A lot of local energy providers own or manage their own solar farms. This way, you can buy in and ‘fund’ the community project in exchange for rebates in your monthly energy bill. Supporting these utility-sponsored projects will allow you to reduce your own electricity costs while helping your provider reach their goals in terms of building a more balanced energy portfolio.

Check with your utility provider if they have such a project. If they do, then chances are you are automatically qualified to subscribe to it.

2. You live near a solar farm

Utility providers are not the only entities that can own and manage solar farms. Private companies, non-profit organizations, and even local government units can run shared solar projects that you can easily subscribe to.

Sometimes, members of the actual community come together to pitch in the capital for the solar farm, making it purely community-owned and for the benefit of the general public.

In any case, it is required that you live close enough to a solar farm for a viable subscription.

3. You can’t put up solar panels at home

One of the most important considerations when choosing your solar-generating system of choice is feasibility. PV panels will require you to have ample space at home, not to mention the authority to make such installations on the roof (or even on the ground surrounding your house.)

More often than not, you will not be allowed to make modifications to a rented house, even if it’s for something as beneficial as a solar panel system. In this case, subscribing to a community solar program would be your best bet.

solar-powered-home

Even if you live in your own house, though, solar panels may not always be suitable. Not all roofs can accommodate those installations. If your area gets more shade than sunlight, sourcing your solar energy from a shared solar garden might still be the most cost-efficient solution.

4. You move a lot

Flexibility is a prime benefit of having a community solar subscription, as opposed to investing in your own solar system at home. If the nature of your job or lifestyle is that it requires you to move a lot, it just won’t be practical to invest in your own panels because of the sheer effort it would take you to uninstall, transport, and install them all over again with every move.

Going for a solar farm subscription will give you more flexibility when moving since it’s typically easy to suspend or cancel your subscription to one and just subscribe to a different project that’s nearer the place where you’re moving. It’s also a great way to maintain environmental sustainability with every move.

If any or all four of these factors are attendant in your case, then you already know that you possess the golden opportunity to try out a community solar program and see how it works out for you.

Biomass Gasification Power Systems

Biomass gasification power systems have followed two divergent pathways, which are a function of the scale of operations. At sizes much less than 1MW, the preferred technology combination today is a moving bed gasifier and ICE combination, while at scales much larger than 10 MW, the combination is of a fluidized bed gasifier and a gas turbine.

biomass-gasifier

Larger scale units than 25 MW would justify the use of a combined cycle, as is the practice with natural gas-fired gas turbine stations. In the future it is anticipated that extremely efficient gasification based power systems would be based on a combined cycle that incorporates a fuel cell, gas turbine  and possibly a Rankine bottoming cycle.

Integrated Gasification Combined Cycle

The most attractive means of utilising a biomass gasifier for power generation is to integrate the gasification process into a gas turbine combined cycle power plant. This will normally require a gasifier capable of producing a gas with heat content close to 19 MJ/Nm3. A close integration of the two parts of the plant can lead to significant efficiency gains.

The syngas from the gasifier must first be cleaned to remove impurities such as alkali metals that might damage the gas turbine. The clean gas is fed into the combustor of the gas turbine where it is burned, generating a flow of hot gas which drives the turbine, generating electricity.

Hot exhaust gases from the turbine are then utilised to generate steam in a heat recovery steam generator. The steam drives a steam turbine, producing more power. Low grade waste heat from the steam generator exhaust can be used within the plant, to dry the biomass fuel before it is fed into the gasifier or to preheat the fuel before entry into the gasifier reactor vessel.

Schematic of integrated biomass gasification combined cycle

The gas-fired combined cycle power plant has become one of the most popular configurations for power generation in regions of the world where natural gas is available. The integration of a combined cycle power plant with a coal gasifier is now considered a potentially attractive means of burning coal cleanly in the future.

Biomass Fuel Cell Power Plant

Another potential use for the combustible gas from a biomass gasification plant is as fuel for a fuel cell power plant. Modern high temperature fuel cells are capable of operating with hydrogen, methane and carbon monoxide. Thus product gas from a biomass gasifier could become a suitable fuel.

As with the integrated biomass gasification combined cycle plant, a fuel cell plant would offer high efficiency. A future high temperature fuel cell burning biomass might be able to achieve greater than 50% efficiency.

Solar-Powered Pumps are Game-Changing for Agriculture

The first thing that comes to mind when you hear solar power is a solar panel placed on a rooftop for creating electricity for commercial or residential use. However, solar power has another important function – to mine and deliver water to improve productivity. This is especially applicable in sunny nations like Australia and most countries in Africa since its main industry is agriculture. Still, their productivity is suffering since their fields don’t get sufficient irrigation. Though, using solar pumps, they can double or even triple their profits. These economic gains can improve the lives of many farming communities.

Importance of Water in Agriculture

Our lives depend on clean water. The developed countries can sometimes take water for granted, but the evolving economies understand the significance of this commodity. A solar pump is an ecological option to get water for the crops and deliver drinkable, clean water.

The founder and CEO of the British-American company Ignite Power, Yariv Cohen, confirmed that solar pumps brought more efficiency, leading to bigger disposable income and more employment. Farmers can now grow three seasons per year instead of one. So, disposable income increased by 20% to 30%.

60% of the Sub-Saharan Africa population is employed in agriculture. Therefore, agriculture is accountable for 60% of economic output. This is less productive than the other regions in the world since only a part of the farmland gets constant irrigation – just 6% across Africa. Most farmlands go without irrigation, so most farmers in Africa rely only on rain for the larger lands, while they take care of the smaller areas with manual effort.

What is Solar-Powered Pumping System

The solar-powered pumping systems include a solar panel array, which fuels an electric motor. The motor, in turn, fuels the surface pump. The water is pumped from the stream or ground into a storage tank, utilized to water crops. If the farmland is irrigated consistently with solar pumps, the farmers will double the production compared to farmlands irrigated by rainwater or with manual effort.

Life-changing mechanism

About 600 million who live in Africa don’t have consistent electricity access. This is damaging the economic health of the continent. Everyone knows the ideal solution is to expand the electrical grid, but financial and geographical considerations prevent that. Ignite Power provides off-grid solutions to African countries in rural places like Nigeria, Mozambique, Rwanda, and Sierra Leone.

Cohen explains how solar pumps allow the farmers to irrigate their lands by using the sun. They first connect the homes, and then they utilize the same solar panels to water the fields. Using solar power, the pump enables a big area to be regularly irrigated. This improves the yield affordably.

Ignite Power has 1.1 million customers in Africa. So, there is room for enormous growth for his company and other providers of solar power in the continent. Cohen aims to reach 500 million houses.

They work with the bank and try to find the ideal solutions. They want to provide the best solution for the country with the help of the government. They can connect any payment providers or manufacturers to their system. They can connect all the suppliers, so many people could join.

The case of the two Rwandan women Grace Uwas (23) and Tharcille Tuyisenge (20) is admirable. They started working with Cohen’s company and bought solar systems for homes in Rwamagana, so people there have sustainable and safe electricity. Until now, they have installed twenty-five solar systems and more are coming!

Bottom Line

Electricity is the quintessence for any country. The solar power is game changing for African evolving communities to get access. In this way, they won’t just keep their lights on, but their agricultural productivity will be improved.

Facts About Cleaning Solar Panels

Once you have solar panels installed, you may think your work is done. After all, you’re doing your part to lessen dependence on fossil fuels and increase usage of renewable energies. But, if you don’t properly maintain your solar panels, they won’t work nearly as efficiently as they should. Just as you regularly wash your windows or change the oil in your car, so should you employ professional solar panel cleaners to keep your solar panels working well. These facts about cleaning solar panels explain why keeping them clean is so important.

facts about cleaning solar panels

Dust and Leaves Block Sunlight

Over the years, it’s common for dust and leaves to accumulate on your solar panels. They’re just like any other surface in that grime builds up over time if you don’t remove it. While a small amount of dust or just a few leaves won’t affect the efficiency of your solar panels much, if you let dust and leaves fully cover the panels’ surfaces, less sunlight will get through to the solar panel receptors. Therefore, your solar panels won’t be absorbing as much light as possible, making them work harder than necessary.

Bird Droppings Block Sunlight

Even more harmful than dust to your solar panels’ ability to work efficiently are bird droppings. Sunlight simply can’t penetrate bird droppings, so if you let it build up on your solar panels, you’re not fully taking advantage of the sunlight to store energy. This is especially true if you have a lot of trees in your yard that are shedding leaves and providing a haven for birds, who then naturally do their business onto your solar panels. The combination of leaves and bird droppings can really make it difficult for your solar panels to do their job.

Energy Loss is Real

Studies show that by not cleaning your solar panels regularly, you’ll have a 5% energy loss after just three months. This increases by 5% every three months that you go without cleaning your solar panels until you’re experiencing a 35% energy loss 24 months after you’ve installed your solar panels. This means you’re spending more money for energy than you should be because your solar panels aren’t working efficiently.

Professional Solar Panel Cleaning is the Way to Go

You may think that cleaning your solar panels is simple and a task that you can do on your own without professional assistance. But, keep in mind that professional solar panel cleaners are experienced with working on roofs and have all the necessary safety equipment to ensure they don’t take a dangerous fall. It’s always advised that if you want to clean your own solar panels that you do it by implementing a long-handled cleaning tool that allows you to reach the panels from the ground.

solar panels pigeon issue

Additionally, you may not want to add another chore to your to-do list, especially one that comes with a risk of falling (if you decide to clean them from the roof). Purchasing safety equipment along with the right cleaning tools may be too much of a hassle when you can simply call up a solar panel maintenance expert and have the task taken care of for you in no time at all.

Conclusion

No one really thinks about cleaning their solar panels until they realize how much energy (and money) they’re losing by allowing dust and debris to build up on them. Add solar panel cleaning to your regular house maintenance schedule and you’ll keep reaping the maximum energy production from your solar panels.

Recommended Reading: Why Do Solar Panels Degrade