5 Easy Ways to be Greener in Your Marine Business

Do you run a marine-oriented business? If so, then you may have a unique opportunity to practice environmental conservation. Water, as you know, plays a major role in sustaining life on Earth. Anything you can do to preserve and protect water goes a long way in helping to combat climate change. Marine work covers a wide range of fields, but we found a few tips and tricks that may be applicable to most relevant businesses. Here are a few easy ways to make your marine business greener.

1. Use Less Chemicals in Pools

Here’s a tip for those who work in pool maintenance: use less chemicals. You can use fewer chemicals and also maintain a clean and healthy pool. This may take some strategic planning on your part, but it’s possible.

There are two main chemicals that are used to kill bacteria in pools: chlorine and bromine. Chlorine is more commonly used because it’s cheaper. But bromine is a longer-lasting chemical. Chlorine requires weekly doses because it’s neutralized quickly. You don’t need to dose the pull with bromine every week because bromine is more resilient. When you use bromine, you’re using less chemicals, which is better for the environment.

The downside to bromine is that it’s much more expensive than chlorine. If you have clients who are passionate about the environment, you could explain this to them and ask if they’d be willing to pay a slightly higher fee for bromine chemicals. Remember that you might be able to reduce the number of visits to that pool if you use bromine on it, which could reduce your operational costs.

2. Use Pool Covers

Water naturally evaporates from pools, and pool owners spend a lot of money having to top-off the pool with water every month. It’s a bigger problem in warmer areas, like in Nevada or Southern California. Water is a resource that’s taken for granted, and some of those aforementioned regions experience severe water shortages in times of drought. You should try and limit how often your clients’ pools are re-filled.

Convince your clients to use pool covers during months when they don’t use the pool as frequently. Covers reduce the amount of water that evaporates from the pool. You may be able to charge clients for having your employees cover and uncover the pool. You can use pathos to argue your case; pool covers also prevent young children and small animals from drowning.

3. Practice Eco-Friendly Boating

Do you run a business that involves boating? Be careful about which chemicals you use when you’re cleaning and maintaining your boat. Some chemicals contribute to harmful emissions, while others can pollute the ocean or lakes and kill marine life.

You should use marine foam and marine paint when you’re doing maintenance on the hull and exterior features. Those materials are eco-friendly. You should avoid using antifouling paint, which is very dangerous for marine life. You should also limit your use of household cleaners. You don’t want these chemicals spilling into the ocean. Try and use natural cleaners instead, like vinegar, lemon, and baking soda.

It’s illegal to dump sewage in any body of navigable water because sewage is bad for the ocean. Always properly dispose of sewage at a pumpout facility. Be proactive in fixing leaks, and always have absorbent towels on hand to clean oil off the bilge.

4. SCUBA Conservation

If you run a dive shop, be vigilant in protecting the reefs where you take divers. Educate divers—especially new divers—about not touching coral reefs, and about being careful where they kick their fins. Most scuba divers are respectful of the underwater ecosystems, but there’s a bad apple in every bunch. If you have to, threaten to end dives short if any diver knowingly disobeys your environmental rules.

5. Recycle

Last, but certainly not least, recycle! Recycling is one of the easiest and most simple ways to make your marine business more eco-friendly. Regardless of whether you’re a contractor or if you work on a boat, you should always have recycling bins where you can toss used plastics and glass. Take these materials to recycling facilities so that they can be properly re-made into new items. Some recycling facilities even pay you for bringing in materials.

If you run a marine-based business, you have the potential to protect the environment in a huge number of ways. Practice eco-friendly cleaning methods and sustainability, and educate your clients on how they can contribute.

Waste Management Perspectives for Military

Waste management has a profound impact on all sections of the society, and military is no exception. With increasing militarization, more wars and frequent armed conflicts, protection of the environment has assumed greater significance for military in armed conflicts as well as peacetime operations. Tremendous amount of waste is generated by military bases and deployed forces in the form of food waste, papers, plastics, metals, tires, batteries, chemicals, e-waste, packaging etc.

waste-management-army

War on Waste

Sustainable management of waste is a good opportunity for armed forces to promote environmental stewardship, foster sustainable development and generate goodwill among the local population and beyond. Infact, top military bases in the Western world, like Fort Hood and Fort Meade, have an effective strategy to counter the huge amount of solid waste, hazardous waste and other wastes generated at these facilities.

Waste management at military bases demands an integrated framework based on the conventional waste management hierarchy of 4Rs – reduction, reuse, recycling and recovery (of energy). Waste reduction (or waste minimization) is the top-most solution to reduce waste generation at military bases which demands close cooperation among different departments, including procurement, technical services, housing, food service, personnel. Typical waste reduction strategies for armed forces includes

  • making training manuals and personnel information available electronically
  • reducing all forms of packaging waste
  • purchasing products, such as food items, in bulk
  • purchasing repairable, long-lasting and reusable items

Due to large fraction of recyclables in the waste stream, recycling is an attractive proposition for the armed forces. However, environmental awareness, waste collection infrastructure, and modern equipment are essential for the success of any waste management strategy in a military installation.

recycling-in-offices

Food waste and yard waste (or green waste) can be subjected to anaerobic digestion or composting to increase landfill diversion rates and obtain energy-rich biogas (for cooking/heating) and nutrient-rich fertilizer (for landscaping and gardening). For deployed forces, small-scale waste-to-energy systems, based on thermal technologies, can be an effective solution for disposal of combustible wastes, and for harnessing energy potential of wastes. In case of electronic wastes, it can be sent to a Certified Electronics Recycling and Disposal firm.

Key Aspect

Management options for military installations is dependent on size of the population, location, local regulations, budgetary constraints and many other factors. It is imperative on base commanders to evaluate all possible options and develop a cost-effective and efficient waste management plan. The key factors in the success of waste management plan in military bases are development of new technologies/practices, infrastructure building, participation of all departments, basic environmental education for personnel and development of a quality recycling program.

Military installations are unique due to more than one factor including strict discipline, high degree of motivation, good financial resources and skilled personnel. Usually military installations are one of the largest employers in and around the region where they are based and have a very good influence of the surrounding community, which is bound to have a positive impact on overall waste management strategies in the concerned region.

Solid Waste Management in Pakistan

Solid waste management situation in Pakistan is a matter of grave concern as more than 5 million people to die each year due to waste-related diseases. In Pakistan roughly 20 million tons of solid waste is generated annually, with annual growth rate of about 2.4 percent. Karachi, largest city in the country, generates more than 9,000 tons of municipal waste daily. All major cities, be it Islamabad, Lahore or Peshawar, are facing enormous challenges in tackling the problem of urban waste. The root factors for the worsening garbage problem in Pakistan are lack of urban planning, outdated infrastructure, lack of public awareness and endemic corruption.

Karachi-Garbage-Dump

Contributing Factors

Being the 6th most populated country in the world; there is a lot of consumerism and with it a great deal of waste being produced. Like other developing countries, waste management sector in Pakistan is plagued by a wide variety of social, cultural, legislative and economic issues.  In the country, more waste is being produced than the number of facilities available to manage it. Some of the major problems are:

  • There is no proper waste collection system
  • Waste is dumped on the streets
  • Different types of waste are not collected separately
  • There are no controlled sanitary landfill sites. Opening burning is common.
  • Citizens are not aware of the relationship between reckless waste disposal and resulting environmental and public health problems

As a result of these problems, waste is accumulating and building up on roadsides, canals, and other common areas and burning trash is common, causing hazardous toxins to be exposed thereby threatening human and environmental health. Among the already few landfill sites that are present, even fewer are in operation. Even within Pakistan’s capital, Islamabad, there are no permanent landfills to be found.

The waste on the roads allows for an ideal environment for various flies to thrive which effects both human health and the health of the environment for other species. The poor solid waste management in Pakistan has caused numerous diseases and environmental problems to rise.

Waste Management Situation in Lahore

In Lahore, the capital of Punjab and the second largest city in Pakistan, there are currently no controlled waste disposal facilities are formal recycling systems, though roughly 27% of waste (by weight) is recycled through the informal sector, Lahore does not have very high performing governmental management in the waste management situation. Instead, the City District Government Lahore established the Lahore Waste Management Company and left the responsibility of the Solid Waste Management in Lahore to them. Beginning in 2011, Lahore Waste Management Company strives to develop a system of SWM that ensures productive collection, recovery, transportation, treatment and disposal of the waste in Lahore.

Lahore Waste Management Company (LWMC) has over 10,000 field workers involved in waste collection and disposal. Though the LWMC is working in phases, 100% collection rates are not seen yet. Lahore currently only has three disposal sites which are no more than dumps, where illegal dumping and trash burning is common. However, there is some resource recovery taking place. It is estimated that 27% of dry recyclables are informally recycled within the city. Additionally a composting plant converts 8% of waste into compost.

In general, the governance over the Waste Management in Lahore is hardly present. Though there are current projects and plans taking place, by the Lahore Waste Management Company for example, in order to achieve a productive and sustainable system in the city it is necessary for all service providers (formal, private, and informal) to take part in decisions and actions.

Current Activities and Projects

According to the United Nations Environment Program, there are six current activities and plans taking place towards an efficient waste management system. These current activities are as follows:

  • Solid Waste Management Guidelines (draft) prepared with the support of Japan International Cooperation Agency (JICA), Japan.
  • Converting waste agricultural biomass into energy/ material source – project by UNEP, IETC Japan.
  • North Sindh Urban Services Corporation Limited (NSUSC) – Assisting the district government in design and treatment of water supply, sanitation and solid waste management
  • The URBAN UNIT, Urban Sector Policy & Management Unit P & D Department, Punjab. Conducting different seminars on awareness of waste water, sanitation & solid waste management etc.
  • Lahore Compost (Pvt.) Ltd. only dealing with the organic waste with the cooperation of city district government Lahore, Pakistan. The company is registered as a CDM project with UNFCCC.
  • Different NGOs are involved at small scale for solid waste collection, and recycling.

Additionally, in November 2013 a German company, agreed to invest in the installation of a 100 megawatt power plant which generates energy from waste from Lahore. Progress is being made on the country’s first scientific waste disposal site in Lakhodair. With this in mind, the Lahore Waste Management Company considered other possible technologies for their Waste-to-Energy project. They opened up applications for international companies to hire as the official consultant for LWMC and their project. The results of the feasibility study results showed that the power plant has the potential to process 1035 tons of municipal waste daily, and generate 5.50 megawatt electricity daily.

The Way Forward

Although SWM policies do exist, the levels at which they are implemented and enforced lack as a result of the governmental institutions lacking resources and equipment. These institutions are primarily led by public sector workers and politicians who are not necessarily the most informed on waste management. For improvements in municipal solid waste management, it is necessary for experts to become involved and assist in the environmental governance.

Due to the multiple factors contributing to the solid waste accumulation, the problem has become so large it is beyond the capacity of municipalities. The former director of the Pakistan Council of Scientific and Industrial Research, Dr. Mirza Arshad Ali Beg, stated, “The highly mismanaged municipal solid waste disposal system in Pakistan cannot be attributed to the absence of an appropriate technology for disposal but to the fact that the system has a lot of responsibility but no authority.” Laws and enforcement need to be revised and implemented. The responsibility for future change is in the hands of both the government, and the citizens.

Waste practices in the Pakistan need to be improved. This can start with awareness to the public of the health and environment impacts that dumped and exposed waste causes. It is imperative for the greater public to become environmentally educated, have a change in attitude and take action.

Entrepreneurial Opportunities in Solid Waste Management

Entrepreneurship in solid waste management can be instrumental in environment protection, decentralization, economic restructuring and job creation. Entrepreneurial opportunities in solid waste planning are available in the areas of waste collection, waste handling, waste sorting, waste storage, waste transport, waste transformation and energy recovery from waste.

Entrepreneurship begins with the generation of an idea and culminates in realization of the project objectives. Historically, the improvement of waste management services by the public sector has been hampered by lack of funds in both developed and developing nations.

entrepreneurship in waste management

Waste materials destined to be processed to generate electricity

Entrepreneurs can not only invest money in solid waste management sector, but also infuse new ideas, technologies and skills which can transform waste from being a liability into an asset. The efficiency of solid waste management increases with the involvement of entrepreneurs. Infact, it has been observed that involvement of entrepreneurs in solid waste management planning can reduce the service cost by half in Latin American cities with higher employment generation and vehicles productivity.

Entrepreneurial ventures in solid waste management can range from a one-man project to a mega-scale project involving thousands of skilled and unskilled workers. It has been observed that solid waste management is a labour-intensive process with tremendous potential to generate new jobs, depending on the type of project and the level of creativity. The major areas of entrepreneurial involvement include waste collection, transportation, reuse and recycling, upcycling and power generation.

waste-management-nepal

Basic safety equipment is essential to minimize health risks to informal recycling sector.

According to the World Bank, municipalities in developing countries typically spend 20 to 50 per cent of their annual budget on solid waste management, but only 40 to 70 per cent of solid waste is collected and less than 50 per cent of the population has access to municipal waste collection services.

Solid waste planning is an integral component of urban development as it contributes to public health, resource conservation and environment protection. Scientific disposal of domestic waste can prevent environmental degradation and harmful public health impacts while recycling can help in conservation of precious natural resources and energy.

Entrepreneurial activities in solid waste collection can not only increase waste collection efficiency but also improve waste management services for the marginalized sections of the society. An excellent example is the case of Nigeria-based Wecyclers which is aiming to building a low-cost waste collection infrastructure in Lagos by offering cheap and convenient domestic waste recycling services using a fleet of cargo bikes.

Peeping into the Future of Waste

Waste management is an important tool for curbing climate change and for keeping our environment clean and healthy. Methane generated from biodegradable wastes is a powerful greenhouse gas, and when it’s not captured and used as a fuel it contributes to rapid warming of the atmosphere. Estimates suggest that biodegradable waste in dump sites and uncapped landfill sites are contributing far more methane to the atmosphere than previously thought. What’s more, urban food waste is predicted to increase by 44% from 2005 to 2025, and with no proper management in place, will significantly add to global greenhouse gas emissions.

Worryingly, 38 of the world’s 50 largest dumps are close to the sea, contributing to marine and coastal pollution. The accumulation of plastics in the marine food chain is causing global concern. While we don’t yet know how to clean the oceans, stemming the flow of waste into marine environments would be a step in the right direction.

Wasted health

40% of the world’s waste ends up in open dumps. These aren’t even what you’d call “landfill”. They don’t have any impervious lining to prevent noxious leachate from entering the surrounding environment, nor are they capped to prevent the spread of disease. In fact, in India, the Philippines and Indonesia, the health risk from open dumping of waste is greater than the risk of malaria[i].

3.5 billion people in the world lack access to proper waste management. That figure is expected to grow to 5 billion by 2050. Respiratory diseases, gastrointestinal diseases and occupational health risks add to the misery experienced by the 50,000+ people living from open dumps.

Waste is any material that is no longer wanted for its original purpose. The owner doesn’t have a need for it, and so discards it. Even valuable items can and do end up as waste purely because someone has thrown them away. The recent (and rather brilliant) BBC programme Hugh’s War on Waste shone the spotlight on attitudes towards disposable fashion. A look through the bins of a typical street uncovered a startling amount of clothing that had been thrown away, despite it still being in perfectly good condition. This highlights a simple fact: there is plenty of value in waste.

  • Estimates suggest there are 40 million people globally who are making their living from waste – half of these are working informally.
  • During the last recession in the UK, the waste management sector was one of the only industries to keep growing, resulting in it being termed the “Green Star of the Economy”.
  • Showing people how to turn a waste stream into something valuable isn’t rocket science. There are lots of examples of informal, community-based, grassroots recycling and upcycling projects that generate wealth for the poorest in society.
  • Internet is allowing simple waste processing techniques to be replicated all over the world, and helping make that information accessible is one of the most fulfilling aspects of my career.

Business skills

“Give a man a fish and he can eat for a day. Show a man how to fish and he can eat for the rest of his life.” Teaching people how to make valuable products from waste is important. But just as important, is passing on the business skills to be able to identify a market, factor in costs, check out the competition, market their products and run a successful business.

Development work in the waste arena needs to address both sides of the coin, and in doing so will enable people to start up their own businesses, in their own communities, and generate wealth organically. That’s far more valuable than delivering aid in a ready-made package (which incidentally rarely works – there’s a great TED Talk on this topic by Ernesto Sirolli, called “Want to help someone? Shut up and listen”).

Why closing dumps isn’t a silver bullet

The proliferation of megacities, particularly in developing countries, is causing a health crisis. Decent waste management is an indicator of good governance – that is, if a council or government can collect taxes and provide a waste management service, then it most likely isn’t (very) corrupt. However, in many places where corruption or other forms of bad or weak governance prevail, top-down solutions are notoriously difficult to implement.

Often, when the world’s attention turns to an open dump, the government responds by closing it and the journalists go home. This is what happened with Smokey Mountain dumpsite in the Philippines (and many others around the world). All that happens is another open dump emerges nearby, and the scavengers move to the new site.

The problem is that if there is no alternative solution in place, people will discard of their waste in the only ways available – dumping it or burning it; and the poor will follow the waste.

Replacing an open dump with a government-controlled waste management system isn’t a silver bullet either. The losers, again, are the hundreds, and sometimes thousands of men, women and children who live from scavenging from the dump. It may seem horrific to many of us, but the truth is that if you take that opportunity to earn a paltry living away from the poorest in society, they will starve. Solutions need to be inclusive.

Power to the people

To close dump sites, you need to have a workable alternative solution in place. You need to have regular waste collection taking place, and you need somewhere to take it. Building materials recovery facilities alongside existing open dumps is one idea. Informal waste pickers who are currently working in dangerous conditions on the dumpsite can gain employment (or better still, form a cooperative) sorting recyclable materials and reducing the amount of real “waste” that needs to be disposed of.

For example, Wecyclers in Lagos, Nigeria employs people to cycle around collecting recyclable materials from households. In return for their source-separated waste, the householder receives a small reward.

In Bangalore, IGotGarbage has harnessed the power of phone apps to enable people who were previously waste pickers to be called directly to a house to collect the waste materials. Solutions like this work because they continue to provide livelihoods for people, while taking waste off the streets.

The need for appropriate technology

There will always be something left though: the stuff that really has little value other than the energy embodied in it. In industrialized countries, energy-from-waste incinerators have become popular. Seen as a clean alternative to landfill, these facilities burn the waste, release the energy, and convert it into heat, electricity and ash. Some of that ash (from the air pollution control system) still needs to be disposed of in specially-prepared hazardous waste landfill sites. The remainder, being fairly benign, can be used to make concrete building blocks.

However, incinerators are fairly technology-heavy, rendering them unsuitable for many developing country contexts.

A problem that we’ve witnessed is that waste management companies from industrialised nations try to wholesale their technology in developing countries. The technology is usually unaffordable, and even if the capital can be raised to procure a facility, as soon as something breaks down the whole solution can fall apart.

There is a need for information about simple waste processing technologies to become more open-sourced. Smart future-thinking businesses could capitalise on selling blueprints rather than entire prefabricated facilities. Most of the time it’s far cheaper to fabricate something locally, and also means that when something breaks it can be fixed.

The continuing need for landfill

The fact is that in most cases, a standard, lined landfill site with landfill gas capture is still the most appropriate answer for non-recyclable waste. Add to that a well-organised, low-cost waste collection service with source separation of recyclable materials and biodegradable waste, and you have a relatively affordable solution that is better for the climate, better for health, better for the local economy, and contributes to a more sustainable future.

Landfill may seem very unfashionable to those of us who work in the recycling sector, but nevertheless it will remain a necessity both in developed and developing countries for the foreseeable future.

Joining forces and stepping stones

The success of the Sustainable Development Goals and potential Climate Change Agreement depend on developed and developing countries working together. Miguel Arias Cañete, the EU climate commissioner, said the Climate Coalition alliance showed that developed and developing countries could work together with a common interest. “These negotiations are not about them and us. They are about all of us, developed and developing countries, finding common ground and solutions together. We urge other countries to join us. Together we can do it.”

Necessity is the mother of invention, and we are facing a waste crisis of unprecedented proportion. The potential for waste management in reducing GHG emissions has never been more pertinent. Waste and development practitioners, academics, technology companies, and entrepreneurs around the world are working together more and more to help bring about the change we want to see, which will benefit the billions of people suffering from poor waste management, and the rest of us who share a warming planet – and share the burden of climate change and poverty.

By sharing knowledge through platforms such as beWasteWise and ISWA, and through initiatives like WasteAidWASTE and Wiego, we can start making a dent in this very large problem.

No silver bullets, but lots of small stepping stones in the right direction.

Note: The original and unabridged version of the article can be found at this link. Please visit http://zlcomms.co.uk/ for more information about the author.

The Benefits of Recycling as an Energy Conservation Measure

Recycling is an effective energy conservation measure that translates into avoided emissions alongside other environmental and economic benefits. It saves energy by decreasing or eliminating energy use during extraction, transportation, and processing of raw materials into finished products.

How Recycling Saves Energy

Manufacturing is a labor, waste, and energy-intensive process that is never-ending due to the increasing demand for consumer products. Manufacturing products from scratch requires raw materials to be extracted, transported, and refined. However, when recycling, you are using already refined materials that need less energy to be transformed into usable products.

Recycling also saves time, money, natural resources, conserves the environment, and shrinks landfills. Hence, the more we recycle, the more we save and gain. Because of these benefits, it is essential to sign up for a residential recycling collection service to have your recyclable trash going to the right place.

recycling-in-offices

The amount of energy saved through recycling generally depends on the material being reprocessed. Let’s take a look at the energy savings of four of the most commonly recycled materials.

1. Aluminum

Aluminum manufacturing requires huge amounts of heat and electricity. Despite constant efforts to reduce energy consumption, manufacturing aluminum still costs three times more than the theoretical minimum energy requirement.

Recycling aluminum cans and scrapes requires 6 percent of the energy needed to manufacture aluminum from bauxite ore. Repurposing aluminum saves the energy that would have been used to extract, transport, crush, and combine bauxite with caustic soda. Additionally, extracting aluminum from bauxite requires the ore to be purified and smelted.

Thus, the aluminum recycling process is fast, efficient, and achieves up to 94 percent energy savings. Even better, you can recycle aluminum infinite times without degrading, increasing energy saving in the long run. Besides, introducing new alloys and improved product design along the product chain results in more energy and environmental savings.

2. Glass

Glassmaking is an energy-intensive process that involves melting sand and other minerals at extremely high temperatures. Reprocessing glass still needs lots of energy to melt the glass and make a new product. The U.S. Environmental Protection Agency (EPA) says reprocessing glass results in 30% energy savings. Glass, like aluminum, does not degrade when it is recycled.

Thus, tossing glass in recycling bins will help preserve natural resources, like sand and soda ash, and reduce the energy costs involved with transporting these heavy materials. It also allows glass manufacturers to cut on energy input to their furnaces. The cumulative energy costs decrease by 2 to 3 percent for every 10 percent of broken glass used in the production process.

Moreover, the durability of glass allows for recycling without reprocessing. This means that you can save 100% energy by cleaning and reusing glass around your home and eliminate the need for an energy-intensive manufacturing process.

3. Paper

An average American household throws away 13,000 pieces of paper every year. These translate into almost 1 billion trees worth of paper being thrown away yearly in the U.S. You can recycle all or most of this paper and contribute to 40% energy savings. Recycled paper can be used to make a variety of new paper products.

paper-recycling

However, this is limited by its appearance, which is not as white or smooth as new paper. Fortunately, biodegradable inks and erasable paper promise improved paper recycling efficiency. You could also reduce your paper usage or reuse paper around your home whenever possible to conserve energy and save trees.

4. Plastic

Many plastic products are single-use commodities that are only in use for a few minutes. However, these require hundreds of years to biodegrade. Sadly, approximately 4 percent of America’s total energy consumption goes to producing plastic products.

Recycling plastic requires only about 10% of the energy needed to manufacture one pound of plastic from virgin sources. The recovery process has short-term energy-saving benefits because plastics degrade every time they are recycled.

plastic waste

However, many manufactures have ways of repurposing low-grade plastics to use in less demanding applications, such as carpeting, park benches, auto parts, and insulation.

Other Materials to Recycle Around Your Home

You can recycle many other materials around your home, and you can determine their energy savings using the iWARM tool created by the EPA. Some of these materials include

You can also contribute to energy conservation by purchasing recycled household products. Some of the most common include

  • Egg cartons
  • Newspapers
  • Comic books
  • Trash bags
  • Paper towels
  • Glass containers
  • Car bumpers

Bottom Line

Reduce, reuse, recycle is a lifestyle that leads us to a greener planet. Following these guidelines for a greener planet will also save you some coins because most recycled products cost significantly less than products produced using virgin material. Keep in mind that 75 percent of all waste can be recycled, and doing this will save the planet loads of energy.

Solid Waste Management in Nigeria

Solid waste management is the most pressing environmental challenge faced by urban and rural areas of Nigeria. Nigeria, with population exceeding 170 million, is one of the largest producers of solid waste in Africa. Despite a host of policies and regulations, solid waste management in the country is assuming alarming proportions with each passing day.

waste-nigeria

Nigeria generates more than 32 million tons of solid waste annually, out of which only 20-30% is collected. Reckless disposal of MSW has led to blockage of sewers and drainage networks, and choking of water bodies. Most of the wastes is generated by households and in some cases, by local industries, artisans and traders which litters the immediate surroundings.

Improper collection and disposal of municipal wastes is leading to an environmental catastrophe as the country currently lack adequate budgetary provisions for the implementation of integrated waste management programmes across the States.

According to the United Nations Habitat Watch, African city populations will more than triple over the next 40 years. African cities are already inundated with slums; a phenomenon that could triple urban populations and spell disaster, unless urgent actions are initiated. Out of the 36 states and a federal capital in the country, only a few have shown a considerable level of resolve to take proactive steps in fighting this scourge, while the rest have merely paid lip services to issues of waste management indicating a huge lack of interest to develop the waste sector.

Scenario in Lagos

Lagos State, the commercial hub of Nigeria, is the second fastest growing city in Africa and seventh in the world.  The latest reports estimate its population to be more than 21 million making it the largest city in entire Africa.  With per capita waste generation of 0.5 kg per day, the city generates more than 10,000 tons of urban waste every day.

Despite being a model for other states in the country, municipal waste management is a big challenge for the Lagos State Waste Management Agency (LAWMA) to manage alone, hence the need to engage the services of private waste firms and other franchisee to reduce the burden of waste collection and disposal. One fundamental issue is the delayed collection of household solid waste.  In some cases, the wastes are not collected until after a week or two, consequently, the waste bin overflows and litters the surroundings.

Improper garbage disposal and lack of reliable transport infrastructure means that collected wastes are soon dispersed to other localities. Another unwelcome practice is to overload collection trucks with 5-6 tons of waste to reduce the number of trips; this has necessitated calls by environmental activist to prevail on the relevant legislature to conform to the modern waste transportation standard.

Situation in Oyo

Away from Lagos State, Oyo is another ancient town in Nigeria with an estimated population of six million people. Here, solid waste is regulated by the Oyo State Solid Waste Management Authority (OYOWMA). Unlike Lagos State, Oyo State does not have a proper waste management scheme that cuts across the nooks and crannies of the state, apart from Ibadan, the capital city, people from other towns like Ogbomoso and Iseyin resort to waste burning. In case the waste generators feels that the amount being charged by the waste franchisee is beyond their means, they dump the waste along flood paths thus compounding the waste predicament.

Burning of municipal wastes is a common practice in Nigeria

Burning of municipal wastes is a common practice in Nigeria

Kano and Rivers State with its fair share of population also suffers similar fate in controlling and managing solid waste. Generally speaking, population increase in Nigeria has led to an unprecedented growth in its economy but with a devastating effect on the environment as more wastes are generated due to the need for housing, manufacturing industries and a boost in trade volume.

Future Perspectives

The government at the federal level as a matter of urgency needs to revive its regulatory framework that will be attractive for private sectors to invest in waste collection, recycling and reusing.  The environmental health officer’s registration council of Nigeria would do well to intensify more effort to monitor and enforce sanitation laws as well as regulate the activities of the franchisees on good sustainable practices.

Taking the advocacy further on waste management, to avoid littering the environment, some manufacturing companies (e.g. chemical and paint industry) have introduced a recall process that will reward individuals who returns empty/used plastic containers. This cash incentive has been proven over time to validate the waste to wealth program embarked upon by the manufacturing companies. It is also expected that the government will build more composting and recycling plants in addition to the ones in Ekiti and Kano State to ensure good sustainable waste management.

Waste management situation in Nigeria currently requires concerted effort to sensitize the general public on the need for proper disposal of solid waste. Also, the officials should be well trained on professionalism, service delivery and ensure that other states within the country have access to quality waste managers who are within reach and can assist on the best approach to managing their waste before collection.

Why Do We Need Solid Waste Management?

Some countries have achieved considerable success in solid waste management. But the rest of the world is grappling to deal with its wastes. In these places, improper management of solid waste continues to impact public health of entire communities and cities; pollute local water, air and land resources; contribute to climate change and ocean plastic pollution; hinder climate change adaptation; and accelerate depletion of forests and mines.

Garbage_Bangalore

Compared to solid waste management, we can consider that the world has achieved significant success in providing other basic necessities like food, drinking water, energy and economic opportunities. Managing solid wastes properly can help improve the above services further.

Composting of organic waste can help nurture crops and result in a better agricultural yield. Reducing landfilling and building sanitary landfills will reduce ground and surface water pollution which can help provide cleaner drinking water. Energy recovery from non-recyclable wastes can satiate significant portion of a city’s energy requirement.

Inclusive waste management where informal waste recyclers are involved can provide an enormous economic opportunity to the marginalized urban poor. Additionally, a good solid waste management plan with cost recovery mechanisms can free tax payers money for other issues. In the case of India, sustainable solid waste management in 2011 would have provided

  • 9.6 million tons of compost that could have resulted in a better agricultural yield
  • energy equivalent to 58 million barrels of oil from non-recyclable wastes
  • 6.7 million tons of secondary raw materials to industries in the form of recyclable materials and livelihood to the urban poor

Solid waste management until now has only been a social responsibility of the corporate world or one of the services to be provided by the municipality and a non-priority for national governments. However, in Mumbai, the improperly managed wastes generate 22,000 tons of toxic pollutants like particulate matter, carbon monoxide, nitrous and sulfur oxides in addition to 10,000 grams of carcinogenic dioxins and furans every year. These numbers are only for the city of Mumbai. This is the case in cities all across the developing world. There are numerous examples where groundwater is polluted by heavy metals and organic contaminants due to solid waste landfills.

Solid waste management expenditure of above $ 1 billion per year competes with education, poverty, security and other sustainable initiatives in New York City. Fossil fuels for above 500,000 truck trips covering hundreds of miles are required to transport NYC’s waste to landfills outside the city and state. Similarly, New Delhi spends more than half of its entire municipal budget on solid waste management, while it is desperate for investments and maintenance of roads, buildings, and other infrastructure.

Solid waste management is not just a corporate social responsibility or a non-priority service anymore. Improper waste management is a public health and environmental crisis, economic loss, operational inefficiency and political and public awareness failure. Integrated solid waste management can be a nation building exercise for healthier and wealthier communities. Therefore, it needs global attention to arrive at solutions which span across such a wide range of issues.

The Importance of Waste-to-Energy in Solid Waste Management

Waste-to-energy has been evolving over the years and there are many new developments in this technology, moving in mainly one direction – to be able to applied to smaller size waste streams. Not only is it a strategy that has real importance for the current public policy, it is a strategy that will definitely present itself to additional areas.

waste-management-energy

More than 50% of waste that is burnt in waste-to-energy facilities is already part of the short carbon cycle. In which case, it has an organic derivative and it doesn’t add to climate change, to begin with. The long form carbon that is burned, things like plastics that have come out of the ground in the form of oil do add to climate change. But, they have already been used once. They have already been extracted once and what we are doing is taking the energy out of them after that physical use, capturing some of that (energy), thereby offsetting more carbon from natural gas or oil or coal. So, the net effect is a reduction in carbon emissions.

Waste-to-energy and recycling are complementary depending on the results of analyses of the First and Second Laws of Thermodynamics, which are absolutely valid. One can decide in specific situations whether WTE or whether some type of recycling technology would be more appropriate. It is not an either/or option.

WTE_Plant_Belgium

Waste-to-Energy is now widely accepted as a part of sustainable waste management strategy.

In Austria, it was possible to have an absolute ban on landfilling wastes exceeding 5% organic carbon. This is written in law since 1996. There were some exceptions for some period of time, but landfills of organic wastes are just banned, not just in Austria but also in other cultures similar to Austria – like Switzerland, Sweden and Germany.

Note: This excerpt is being published with the permission of our collaborative partner Be Waste Wise. The original excerpt and its video recording can be found at this link

Effective Ways to Minimize Waste on Construction Sites

For some people, the whole thing of “going green” is a trend, but in the world of construction, “going green” is definitely no trend… In fact, it’s a sustainable building practice that’s here to stay. As more cities adopt greener building regulations for new construction, contractors and construction companies alike are going to face the challenge of keeping up with these sustainable building practices.

One of the biggest areas in construction that greener changes need to happen in is construction waste. They say, “waste not, want not,”… well, in the world of construction, “when you waste less, you spend less.” Sustainable building practices, in the form of minimizing waste, means you’re not only building better, energy-efficient buildings but you’re also saving time and money on all your construction projects.

It’s just amazing to look at how the industry has changed over the years. True enough, certain things haven’t changed like state and industry-specific certifications and licenses… If you live in Oregon, you would still need to meet the Oregon continuing education requirements. But as far as sustainable practices, it’s amazing how more and more people are becoming conscious about reducing their carbon footprint to make the environment a better place… Back in the early 1940s to the 1960s, people could have cared less about their environmental impact.

construction-waste

 

But we are indeed in different times, and the construction industry is doing its part to implement green practices, including reducing construction waste. Here’s how construction companies and contractors are doing their part.

Effective Ways to Minimize Your Construction Waste

1. Avoid Creating Waste in the First Place

To truly manage your construction waste effectively, you should avoid creating it in the first place. Taking steps like taking exact measurements to ensure you have enough materials to build without any unnecessary leftovers is going to help tremendously. Conducting regular inventory checks will prevent you from overordering materials that you already have.

Additionally, properly training your team and educating them on the importance of construction waste management will help them to implement greener practices within their own job responsibilities.

2. Store Your Materials Properly

With construction sites, you’re not always going to be able to haul your materials in and out of a proper storage area; sometimes your materials have to set out on the site. But that also doesn’t mean your materials have to be ruined. You have to first and foremost, secure your site to minimize damage and even theft.

construction-wastes

For example, you can store lumber on blocking and make sure to cover it up to prevent any damages. You want to do the same with brick and other masonry. The main thing is that your materials are a huge investment and you need to do all you can to protect your investment.

According to the National Equipment Register, states that have a large economy percentage in agriculture and construction industries are the biggest targets for thieves, and the most common pieces of equipment to steal include valuable pieces that are easy to move, like tractors, mowers, and other tools. Heavier pieces like bulldozers and backhoes aren’t so common because they’re too difficult to move.

3. Add Organization to Your Construction Site

Construction sites seem like they can be a bit chaotic, which they can, but they don’t have to be by simply adding a little organization to your site. Consider separating your recyclable and salvageable materials together in an area to reduce confusion; this just puts everyone on the same page. When your site is organized and your team knows where everything is, it will cause you to spend less money on unnecessary materials, re-doing work, and sorting in the middle of a project.

4. Recycle and Re-Use Your Salvageable Materials

On all of your construction sites, make it a point to recycle materials like paper, plastic, metal, and glass… wood too. In that same token, also make sure that if there’s a way to reduce any costs in construction projects, re-using your salvaged materials is the way to do it. The purpose is to reuse these materials so that they don’t end up in a landfill somewhere… You can’t always avoid waste on all projects but landfills are one of the worst ways to handle your construction site waste.