Energy Access to Refugees

refugee-camp-energyThere is a strong link between the serious humanitarian situation of refugees and lack of access to sustainable energy resources. According to a 2015 UNCHR report, there are more than 65.3 million displaced people around the world, the highest level of human displacement ever documented. Access to clean and affordable energy is a prerequisite for sustainable development of mankind, and refugees are no exception. Needless to say, almost all refugee camps are plagued by fuel poverty and urgent measure are required to make camps livable.

Usually the tragedy of displaced people doesn’t end at the refugee camp, rather it is a continuous exercise where securing clean, affordable and sustainable energy is a major concern. Although humanitarian agencies are providing food like grains, rice and wheat; yet food must be cooked before serving. Severe lack of modern cook stoves and access to clean fuel is a daily struggle for displaced people around the world. This article will shed some light on the current situation of energy access challenges being faced by displaced people in refugee camps.

Why Energy Access Matters?

Energy is the lifeline of our modern society and an enabler for economic development and advancement. Without safe and reliable access to energy, it is really difficult to meet basic human needs. Energy access is a challenge that touches every aspect of the lives of refugees and negatively impacts health, limits educational and economic opportunities, degrades the environment and promotes gender discrimination issues. Lack of energy access in refugee camps areas leads to energy poverty and worsen humanitarian conditions for vulnerable communities and groups.

Energy Access for Cooking

Refugee camps receive food aid from humanitarian agencies yet this food needs to be cooked before consumption. Thus, displaced people especially women and children take the responsibility of collecting firewood, biomass from areas around the camp. However, this expose women and minors to threats like sexual harassments, danger, death and children miss their opportunity for education. Moreover, depleting woods resources cause environmental degradation and spread deforestation which contributes to climate change. Moreover, cooking with wood affects the health of displaced people.

Access to efficient and modern cook stove is a primary solution to prevent health risks, save time and money, reduce human labour and combat climate change. However, humanitarian agencies and host countries can aid camp refugees in providing clean fuel for cooking because displaced people usually live below poverty level and often host countries can’t afford connecting the camp to the main grid. So, the issue of energy access is a challenge that requires immediate and practical solutions. A transition to sustainable energy is an advantage that will help displaced people, host countries and the environment.

Energy Access for Lighting

Lighting is considered as a major concern among refugees in their temporary homes or camps. In the camps life almost stops completely after sunset which delays activities, work and studying only during day time hours. Talking about two vulnerable groups in the refugees’ camps “women and children” for example, children’s right of education is reduced as they have fewer time to study and do homework. For women and girls, not having light means that they are subject to sexual violence and kidnapped especially when they go to public restrooms or collect fire woods away from their accommodations.

Rationale For Sustainable Solutions

Temporary solutions won’t yield results for displaced people as their reallocation, often described as “temporary”, often exceeds 20 years. Sustainable energy access for refugees is the answer to alleviate their dire humanitarian situation. It will have huge positive impacts on displaced people’s lives and well-being, preserve the environment and support host communities in saving fuel costs.  Also, humanitarian agencies should work away a way from business as usual approach in providing aid, to be more innovative and work for practical sustainable solutions when tackling energy access challenge for refugee camps.

UN SDG 7 – Energy Access

The new UN SDG7 aims to “ensure access to affordable, reliable, sustainable and modern energy for all”. SDG 7 is a powerful tool to ensure that displaced people are not left behind when it comes to energy access rights. SDG7 implies on four dimensions: affordability, reliability, sustainability and modernity. They support and complete the aim of SDG7 to bring energy and lightening to empower all human around the world. All the four dimensions of the SDG7 are the day to day challenges facing displaced people. The lack of modern fuels and heavy reliance on primitive sources, such as wood and animal dung leads to indoor air pollution.

Energy access touches every aspect of life in refugee camps

Energy access touches every aspect of life in refugee camps

For millions of people worldwide, life in refugee camps is a stark reality. Affordability is of concern for displaced people as most people flee their home countries with minimum possessions and belongings so they rely on host countries and international humanitarian agencies on providing subsidized fuel for cooking and lightening. In some places, host countries are itself on a natural resources stress to provide electricity for people and refugees are left behind with no energy access resources. However, affordability is of no use if the energy provision is not reliable (means energy supply is intermittent).

Parting Shot

Displaced people need a steady supply of energy for their sustenance and economic development. As for the sustainability provision, energy should produce a consistent stream of power to satisfy basic needs of the displaced people. The sustained power stream should be greater than the resulted waste and pollution which means that upgrading the primitive fuel sources used inside the camp area to the one of modern energy sources like solar energy, wind power, biogas and other off-grid technologies.

For more insights please read this article Renewable Energy in Refugee Camps 

What Determines the Price of a Home Solar Panel Installation?

People are leaning toward installing solar panels to have a “green” source of energy that would eventually cost them nothing. However, the price point is one of the major concerns that worry homeowners. People feel more inclined to check the price tag on solar panels to decide whether they are going to go for them or not. Just like any renewable source of energy, the initial cost may sound very expensive, however, afterwards, the fuel price comes down to zero. The average cost swings between $15k and $25k, this gap in the range of prices depend mainly on the solar panel size.

But other than the size of solar panels, what other factors affect the price of installation?

The Size Of Solar Panels

The cost of solar panels is calculated by dollar per watt depending on how much electricity you need to generate. A bigger system requires more work to install and that’s how the size affects the cost of installing solar panels. 2kW would averagely cost around $4k, while solar panels that would generate 25 kW costs $53k. Crunching the numbers, it does sound that solar panel cost a lot more than average electricity bills paid per month, thanks to low-interest installment plans, buying big solar panels won’t cost you an arm and a leg.

Variation Of Price Between States

Solar panel prices may seem like they’re all the same across all states, however, you can use the same exact solar panels at two different states and you will get different costs. The reason behind these variations depends on the cost of electricity in every state. Let’s take Washington, for example, the cost of 6kw generated from a solar panel will cost around $9k, while the same in New York will cost $12k.

Solar panels are becoming more accessible, for homeowners and businesses

The prices definitely seem costly, however, if one thought about the overall cost of electricity from solar energy and normal sources, solar is definitely cheaper.

The Quality

Prices differ according to the manufacturer brand; prices can range from $13k up to $17k. The local Sandbar Solar not only provides high-quality panels, complex commercial and residential setups, but also cares about the community by sponsoring many events with their eco-friendly Solar Trailer.

Other than the panel brand you are going to choose, other factors must be kept in mind; the experience of the installer, racking equipment, and the location also affects the prices. So, when you are choosing the brand for the installation project, you need to be careful and consider all the factors and aspects.

Clean Energy

Choosing a renewable source of energy is the best thing one can do these days. The greenhouse effect that is caused by coal, petroleum, and gas will put an end to the earth at some point. It’s our responsibility to go “green” to save the Earth for a better world. Other than that, even if you don’t care about the environment, a clean source of energy that depends on wind or the sun, would definitely cost you a big amount at the beginning, but in the long run, they are cheaper sources of electricity.

Renewable Energy in Refugee Camps

dabaab-refugee-campAccess to clean and affordable energy is a prerequisite for sustainable development of mankind, and refugees are no exception. Refugee camps across the world house more than 65 million people, and almost all refugee camps are plagued by fuel poverty. Needless to say, urgent measure are required to make camps livable and sustainable.

Rapid advancements in renewable energy technologies have made it possible to deploy such systems on various scales.  The scalability potential of renewable energy systems makes them well-suited for refugee camps, especially in conflict-afflicted areas of the Middle East, Asia and Africa.

Renewable energy in refugee camps can be made available in the form of solar energy, biomass energy and wind energy. Solar panels, solar cooking units, solar lanterns, biomass cookstoves and biogas plants are some of the popular renewable energy technologies that can improve living standards in refugee camps. It is important to focus on specific needs of refugees and customization of technology towards local conditions. For example, solar technologies are better understood than biogas systems in Jordan.

Solar Energy

Solar energy can provide long-term resilience to people living in refugee camps. With many camps effectively transformed into full-fledged towns and cities, it is essential to harness the power of sun to run these camps smoothly. Solar cookers, solar lanterns and solar water heaters are already being used in several refugee camps, and focus has now shifted to grid-connected solar power projects.

The 5MW Azraq solar project is the world’s first grid-connected renewable energy project to be established in a refugee camp. The project is being funded entirely by Ikea through the Brighter Lives for Refugees campaign. The program, now in its third year, seeks to improve the lives of refugees around the world by providing access to sustainable energy supplies.

Biomass Energy

Due to lack of land and resources, refugee camps puts tremendous pressure on natural vegetation, especially supply of fuel wood to camp-dwellers. Replacement of traditional stoves with efficient biomass-fired cook stoves can save as much as 80% of cooking fuel.

Instead of wood, it would be also be a good option to use agricultural wastes, like husk and straw. Another interesting proposition for refugee camps is to set up small-scale DIY biogas plants, based on human wastes and food residuals. The biogas produced can be used as a cooking medium as well as for power/heat generation.

Wind Energy

Small wind turbines can also play a key role in providing energy to dwellers of refugee camps. Such turbines are used for micro-generation and can provide power from 1kW to 300kW. Majority of small wind turbines are traditional horizontal axis wind turbines but vertical axis wind turbines are a growing type of wind turbine in the small wind market. Small wind turbines are usually mounted on a tower to raise them above any nearby obstacles, and can sited in refugee camps experiencing wind speeds of 4m/s or more.

Solar lights in Azraq Refugee Camp (Jordan)

Solar lights in Azraq Refugee Camp (Jordan)


Renewable energy systems have the potential to improve living standards in refugee camps and ease the sufferings of displaced and impoverished communities. Solar panels, biogas system, biomass stoves and micro wind turbines are some of the renewable energy systems that can be customized for refugee camps and transform them into a less harsh place for displaced people.

Is Green Car Fuel A Reality?

drop-in-biofuelsVehicles remain a huge global pollutant, pumping out 28.85Tg of CO2 in Maharashtra alone, according to a study by the Indian Institute for Science in Bangalore. However, vehicles cannot be discarded, as they form the lifeblood of the country’s towns and cities. Between electric vehicles and hybrids, work is being done to help rectify the situation by making use of green car fuel and technological advancements.

Emissions continue to be a huge issue, and there are two main options for helping to rectify that. The first is electric, which is seeing widespread adoption; and the second, biomass fuel, for more traditional vehicles. Between the two, excellent progress is being made, but there’s much more to be done.

How electric is helping

Electric cars are favoured heavily by the national authorities. A recent Times of India report outlined how the government is aiming for an all-electric vehicle fleet by 2030 and is pushing this through with up to US$16m of electric vehicle grants this year. Green vehicles are obviously a great choice, improving in-city noise and air pollution whilst providing better vehicular safety to boot; a study by the USA’s MIT suggested that electric vehicles are all-around safer than combustion.

However, where EVs fall down to some extent is through the energy they use. As they are charged from the electricity grid, this means that the electricity is largely derived from fossil fuels – official statistics show that India is 44% powered by coal. Ultimately, however, this does mean that emissions are reduced. Fuel is only burned at one source, and oil refining isn’t done at all, which is another source of pollutants. However, as time goes on and the government’s energy policy changes, EVs will continue to be a great option.

The role of biofuels

Biofuels are seeing a huge growth in use – BP has reported that globally, ethanol production grew 3% in 2017. Biofuel is commonly a more favoured option by the big energy companies given the infrastructure often available already to them. While biofuel has been slow on the uptake in India, despite the massive potential available for production, there are now signs this is turning around with the construction of two US$790m biofuel facilities.

Biofuels are increasingly being used to power vehicles around the world

The big benefit of biofuel is that it will have a positive impact on combustion and electric vehicles. The Indian government has stated they intend to use biofuel alongside coal production, with as much as 10% of energy being created using biofuel. Therefore, despite not being emission-free, biofuel will provide a genuine green energy option to both types of eco-friendly vehicle.

Green car fuel is not entirely clean. The energy has to come from somewhere, and in India, this is usually from coal, gas, and oil. However, the increase in biofuel means that this energy will inevitably get cleaner, making green car fuel absolutely a reality.

Biomass Energy and Sustainability

biomass-sustainabilityBiomass energy systems offer significant possibilities for reducing greenhouse gas emissions due to their immense potential to replace fossil fuels in energy production. Biomass reduces emissions and enhances carbon sequestration since short-rotation crops or forests established on abandoned agricultural land accumulate carbon in the soil. Biomass energy usually provides an irreversible mitigation effect by reducing carbon dioxide at source, but it may emit more carbon per unit of energy than fossil fuels unless biomass fuels are produced in a sustainable manner.

Biomass resources can play a major role in reducing the reliance on fossil fuels by making use of thermo-chemical conversion technologies. In addition, the increased utilization of biomass-based fuels will be instrumental in safeguarding the environment, generation of new job opportunities, sustainable development and health improvements in rural areas.

The development of efficient biomass handling technology, improvement of agro-forestry systems and establishment of small and large-scale biomass-based power plants can play a major role in sustainable development of rural as well as urban areas. Biomass energy could also aid in modernizing the agricultural economy and creating significant job opportunities.

Harvesting practices remove only a small portion of branches and tops leaving sufficient biomass to conserve organic matter and nutrients. Moreover, the ash obtained after combustion of biomass compensates for nutrient losses by fertilizing the soil periodically in natural forests as well as fields.

The impact of forest biomass utilization on the ecology and biodiversity has been found to be insignificant. Infact, forest residues are environmentally beneficial because of their potential to replace fossil fuels as an energy source.

A quick glance at popular biomass resources

A quick glance at popular biomass resources

Plantation of energy crops on abandoned agricultural land will lead to an increase in species diversity. The creation of structurally and species diverse forests helps in reducing the impacts of insects, diseases and weeds. Similarly the artificial creation of diversity is essential when genetically modified or genetically identical species are being planted.

Short-rotation crops give higher yields than forests so smaller tracts are needed to produce biomass which results in the reduction of area under intensive forest management. An intelligent approach in forest management will go a long way in the realization of sustainability goals.

Improvements in agricultural practices promises to increased biomass yields, reductions in cultivation costs, and improved environmental quality. Extensive research in the fields of plant genetics, analytical techniques, remote sensing and geographic information systems (GIS) will immensely help in increasing the energy potential of biomass feedstock.

A large amount of energy is expended in the cultivation and processing of crops like sugarcane, coconut, and rice which can met by utilizing energy-rich residues for electricity production. The integration of biomass-fueled gasifiers in coal-fired power stations would be advantageous in terms of improved flexibility in response to fluctuations in biomass availability and lower investment costs. The growth of the biomass energy industry can also be achieved by laying more stress on green power marketing.

Clean Energy Investment Forecast for 2016

renewables-investment-trendsGlobal interest in clean energy technologies reached new heights last year and 2016 promises to be another record-breaker. The year 2015 witnessed installation of more than 121 GW of renewable power plants, a remarkable increase of 30% when compared to 2014. With oil and gas prices tumbling out to unprecedented levels, 2016 should be a landmark year for all clean energy technologies. As per industry trends, solar power is expected to be the fastest-growing renewable power generation technology in 2016, closely followed by wind energy. Among investment hotspots, Asia, Africa and the Middle East will be closely watched this year.

Investment Forecast for 2016

Clean energy is rapidly becoming a part of mainstream investment portfolios all over the world. In 2016, a greater attention will be focused on renewable energy, mainly on account of the Paris Framework and attractive tax credits for clean energy investments in several countries, especially USA.

Infact, the increasing viability of clean energy is emerging as a game-changer for large-scale investors. The falling prices of renewable power (almost 10% per year for solar), coupled with slump in crude oil prices, is pulling global investors away from fossil fuel industry. At the 2016 UN Investor Summit on Climate Risk, former US vice president Al Gore said, “If this curve continues, then its price is going to fall “significantly below the price of electricity from burning any kind of fossil fuel in a few short years”.

There has been an astonishing growth in renewable generation in recent years. “A dozen years ago, the best predictors in the world told us that the solar energy market would grow by 2010 at the incredible rate of 1 GW per year,” said Gore. “By the time 2010 came around, they exceeded that by 17 times over. Last year, it was exceeded by 58 times over. This year, it’s on track to be exceeded by 68 times over. That’s an exponential curve.”

China will continue to dominate solar as well as wind energy sectors

China will continue to dominate solar as well as wind energy sectors

As per industry forecasts, China will continue its dominance of world PV market, followed closely by the US and Japan. Infact, USA is anticipated to overtake Japan as the second largest solar market this year. India, which is developing a highly ambitious solar program, will be a dark horse for cleantech investors. The top solar companies to watch include First Solar, Suntech, Canadian Solar, Trina Solar, Yingli Solar, Sharp Solar and Jinko Solar.

Morocco has swiftly become a role model for the entire MENA. The government’s target of 2GW of solar and 2GW of wind power by 2020 is progressing smoothly. As for solar, the 160MW Noor-1 CSP is already commissioned while Noor-2 and Noor-3 are expected to add a combined 350MW in 2017.

China will continue to lead the global wind energy market in 2016, and is on course to achieve its target of 200 GW of installed wind capacity by 2020. Other countries of interest in the wind sector will be Canada, Mexico, Brazil and South Africa. The major wind turbine manufacturers to watch are Siemens, Vestas, Goldwind, Gamesa and GE.


To sum up, the rapid growth of global renewable energy sector in the past few years is the strongest signal yet for investors and corporations to take the plunge towards green energy and low-carbon growth. As the UN chief Ban Ki-moon famously said, “It marks the beginning of the end of growth built solely on fossil fuel consumption. The once unthinkable has now become unstoppable.”

Biomass Energy in China

biomass-chinaBiomass energy in China has been developing at a rapid pace. The installed biomass power generation capacity in China increased sharply from 1.4 GW in 2006 to 14.88 GW in 2017. While the energy share of biomass remains relatively low compared to other sources of renewable energy, China plans to increase the proportion of biomass energy up to 15 percent and total installed capacity of biomass power generation to 30 GW by 2030.

In terms of impact, the theoretical biomass energy resource in China is about 5 billion tons coal equivalent, which equals 4 times of all energy consumption. As per conservative estimates, currently China is only using 5 percent of its total biomass potential.

According to IRENA, the majority of biomass capacity is in Eastern China, with the coastal province of Shandong accounting for 14 percent of the total alone. While the direct burning of mass for heat remains the primary use of biomass in China, in 2009, composition of China’s biomass power generation consisted in 62 percent of straw direct-fired power generation and 29 percent of waste incineration, with a mix of other feedstock accounting for the remaining 9 percent.

Biomass Resources in China

Major biomass resources in China include waste from agriculture, forestry, industries, animal manure and sewage, and municipal solid waste. While the largest contributing sources are estimated to be residues from annual crop production like wheat straw, much of the straw and stalk are presently used for cooking and heating in rural households at low efficiencies. Therefore, agricultural residues, forestry residues, and garden waste were found to be the most cited resources with big potential for energy production in China.

Agricultural residues are derived from agriculture harvesting such as maize, rice and cotton stalks, wheat straw and husks, and are most available in Central and northeastern China where most of the large stalk and straw potential is located. Because straw and stalks are produced as by-products of food production systems, they are perceived to be sustainable sources of biomass for energy that do not threaten food security.

Furthermore, it is estimated that China produces around 700 Mt of straw per year, 37 percent of which is corn straw, 28 percent rice, 20 percent wheat and 15 percent from various other crops. Around 50 percent of this straw is used for fertilizers, for which 350 Mt of straw is available for energy production per year.

Biomass resources are underutilized across China

Biomass resources are underutilized across China

Forestry residues are mostly available in the southern and central parts of China. While a few projects that use forestry wastes like tree bark and wood processing wastes are under way, one of the most cited resources with analyzed potential is garden waste. According to research, energy production from garden waste biomass accounted for 20.7 percent of China’s urban residential electricity consumption, or 12.6 percent of China’s transport gasoline demand in 2008.

Future Perspectives

The Chinese government believes that biomass feedstock should neither compete with edible food crops nor cause carbon debt or negative environmental impacts. As biomass takes on an increasing significant role in the China’s national energy-mix, future research specific to technology assessment, in addition to data collection and supply chain management of potential resources is necessary to continue to understand how biomass can become a game-changer in China’s energy future.


IRENA, 2014. Renewable Energy Prospects: China, REmap 2030 analysis. IRENA, Abu Dhabi.

National Academy of Engineering and NRC, 2007: Energy Futures and Urban Air Pollution: Challenges for China and the United States.

Xingang, Z., Zhongfu, T., Pingkuo, L, 2013. Development goal of 30 GW for China’s biomass power generation: Will it be achieved? Renewable and Sustainable Energy Reviews, Volume 25, September 2013, 310–317.

Xingang, Z., Jieyu, W., Xiaomeng, L., Tiantian, F., Pingkuo, L, 2012. Focus on situation and policies for biomass power generation in China. Renewable and Sustainable Energy Reviews, Volume 16, Issue 6, August 2012, 3722–3729.

Li, J., Jinming, B. MOA/DOE Project Expert Team, 1998. Assessment of Biomass Resource Availability in China. China Environmental Science Press, Beijing, China.

Klimowicz, G., 2014. “China’s big plans for biomass,” Eco-Business, Global Biomass Series, accessed on Apr 6, 2015.

Shi, Y., Ge, Y., Chang, J., Shao, H., and Tang, Y., 2013. Garden waste biomass for renewable and sustainable energy production in China: Potential, challenges and development. Renewable and Sustainable Energy Reviews 22 (2013) 432–437

Xu, J. and Yuan, Z, 2015. “An overview of the biomass energy policy in China,” BESustainable, May 21, 2015.

Resource Base for Second-Generation Biofuels

second-generation-biofuelsSecond-generation biofuels, also known as advanced biofuels, primarily includes cellulosic ethanol. The feedstock resource base for the production of second-generation biofuel are non-edible lignocellulosic biomass resources (such as leaves, stem and husk) which do not compete with food resources. The resource base for second-generation biofuels production is broadly divided into three categories – agricultural residues, forestry wastes and energy crops.

Agricultural Residues

Agricultural (or crop) residues encompasses all agricultural wastes such as straw, stem, stalk, leaves, husk, shell, peel, pulp, stubble, etc. which come from cereals (rice, wheat, maize or corn, sorghum, barley, millet), cotton, groundnut, jute, legumes (tomato, bean, soy) coffee, cacao, tea, fruits (banana, mango, coco, cashew) and palm oil.

Rice produces both straw and rice husks at the processing plant which can be conveniently and easily converted into energy. Significant quantities of biomass remain in the fields in the form of cob when maize is harvested which can be converted into energy.

Sugarcane harvesting leads to harvest residues in the fields while processing produces fibrous bagasse, both of which are good sources of energy. Harvesting and processing of coconuts produces quantities of shell and fibre that can be utilised while peanuts leave shells. All these lignocellulosic materials can be converted into biofuels by a wide range of technologies.

Forestry Biomass

Forest harvesting is a major source of biomass energy. Harvesting in forests may occur as thinning in young stands, or cutting in older stands for timber or pulp that also yields tops and branches usable for production of cellulosic ethanol.

Biomass harvesting operations usually remove only 25 to 50 percent of the volume, leaving the residues available as biomass for energy. Stands damaged by insects, disease or fire are additional sources of biomass. Forest residues normally have low density and fuel values that keep transport costs high, and so it is economical to reduce the biomass density in the forest itself.

Energy Crops

Energy crops are non-food crops which provide an additional potential source of feedstock for the production of second-generation biofuels. Corn and soybeans are considered as the first-generation energy crops as these crops can be also used as the food crops. Second-generation energy crops are grouped into grassy (herbaceous or forage) and woody (tree) energy crops.

Grassy energy crops or perennial forage crops mainly include switchgrass and miscanthus. Switchgrass is the most commonly used feedstock because it requires relatively low water and nutrients, and has positive environmental impact and adaptability to low-quality land. Miscanthus is a grass mainly found in Asia and is a popular feedstock for second-generation biofuel production in Europe.

Woody energy crops mainly consists of fast-growing tree species like poplar, willow, and eucalyptus. The most important attributes of these class species are the low level of input required when compared with annual crops. In short, dedicated energy crops as feedstock are less demanding in terms of input, helpful in reducing soil erosion and useful in improving soil properties.

Importance of Biomass Energy

Biomass energy has rapidly become a vital part of the global renewable energy mix and account for an ever-growing share of electric capacity added worldwide. Renewable energy supplies around one-fifth of the final energy consumption worldwide, counting traditional biomass, large hydropower, and “new” renewables (small hydro, modern biomass, wind, solar, geothermal, and biofuels).

Traditional biomass, primarily for cooking and heating, represents about 13 percent and is growing slowly or even declining in some regions as biomass is used more efficiently or replaced by more modern energy forms. Some of the recent predictions suggest that biomass energy is likely to make up one third of the total world energy mix by 2050. Infact, biofuel provides around 3% of the world’s fuel for transport.

Biomass energy resources are readily available in rural and urban areas of all countries. Biomass-based industries can foster rural development, provide employment opportunities and promote biomass re-growth through sustainable land management practices.

The negative aspects of traditional biomass utilization in developing countries can be mitigated by promotion of modern waste-to-energy technologies which provide solid, liquid and gaseous fuels as well as electricity. Biomass wastes encompass a wide array of materials derived from agricultural, agro-industrial, and timber residues, as well as municipal and industrial wastes.

The most common technique for producing both heat and electrical energy from biomass wastes is direct combustion. Thermal efficiencies as high as 80 – 90% can be achieved by advanced gasification technology with greatly reduced atmospheric emissions.

Combined heat and power (CHP) systems, ranging from small-scale technology to large grid-connected facilities, provide significantly higher efficiencies than systems that only generate electricity. Biochemical processes, like anaerobic digestion and sanitary landfills, can also produce clean energy in the form of biogas and producer gas which can be converted to power and heat using a gas engine.

Advantages of Biomass Energy

Bioenergy systems offer significant possibilities for reducing greenhouse gas emissions due to their immense potential to replace fossil fuels in energy production. Biomass reduces emissions and enhances carbon sequestration since short-rotation crops or forests established on abandoned agricultural land accumulate carbon in the soil.

Bioenergy usually provides an irreversible mitigation effect by reducing carbon dioxide at source, but it may emit more carbon per unit of energy than fossil fuels unless biomass fuels are produced unsustainably.

Biomass can play a major role in reducing the reliance on fossil fuels by making use of thermochemical conversion technologies. In addition, the increased utilization of biomass-based fuels will be instrumental in safeguarding the environment, generation of new job opportunities, sustainable development and health improvements in rural areas.

The development of efficient biomass handling technology, improvement of agro-forestry systems and establishment of small and large-scale biomass-based power plants can play a major role in rural development. Biomass energy could also aid in modernizing the agricultural economy.

Consistent and reliable supply of biomass is crucial for any biomass project

When compared with wind and solar energy, biomass power plants are able to provide crucial, reliable baseload generation. Biomass plants provide fuel diversity, which protects communities from volatile fossil fuels. Since biomass energy uses domestically-produced fuels, biomass power greatly reduces our dependence on foreign energy sources and increases national energy security.

A large amount of energy is expended in the cultivation and processing of crops like sugarcane, coconut, and rice which can met by utilizing energy-rich residues for electricity production.

The integration of biomass-fueled gasifiers in coal-fired power stations would be advantageous in terms of improved flexibility in response to fluctuations in biomass availability and lower investment costs. The growth of the bioenergy industry can also be achieved by laying more stress on green power marketing.

Use of Palm Kernel Shells in Circulating Fluidized Bed Power Plants

Palm kernel shells are widely used in fluidized bed combustion-based power plants in Japan and South Korea. The key advantages of fluidized bed combustion (FBC) technology are higher fuel flexibility, high efficiency and relatively low combustion temperature. FBC technology, which can either be bubbling fluidized bed (BFB) or circulating fluidized bed (CFB), is suitable for plant capacities above 20 MW. Palm kernel shells (PKS) is more suitable for CFB-based power plant because its size is less than 4 cm.

With relatively low operating temperature of around 650 – 900 oC, the ash problem can be minimized. Certain biomass fuels have high ash levels and ash-forming materials that can potentially damage these generating units. In addition, the fuel cleanliness factor is also important as certain impurities, such as metals, can block the air pores on the perforated plate of FBC unit. It is to be noted that air, especially oxygen, is essential for the biomass combustion process and for keeping the fuel bed in fluidized condition.

The requirements for clean fuel must be met by the provider or seller of the biomass fuel. Usually the purchasers require an acceptable amount of impurities (contaminants) of less than 1%. Cleaning of PKS is done by sifting (screening) which may either be manual or mechanical.

In addition to PKS, biomass pellets from agricultural wastes or agro-industrial wastes, such as EFB pellets which have a high ash content and low melting point, can also be used in CFB-based power plants. More specifically, CFBs are more efficient and emit less flue gas than BFBs.

The disadvantages of CFB power plant is the high concentration of the flue gas which demands high degree of efficiency of the dust precipitator and the boiler cleaning system. In addition, the bed material is lost alongwith ash and has to be replenished regularly.

A large-scale biomass power plant in Japan

The commonly used bed materials are silica sand and dolomite. To reduce operating costs, bed material is usually reused after separation of ash. The technique is that the ash mixture is separated from a large size material with fine particles and silica sand in a water classifier. Next the fine material is returned to the bed.

Currently power plants in Japan that have an efficiency of more than 41% are only based on ultra supercritical pulverized coal. Modification of power plants can also be done to improve the efficiency, which require more investments. The existing CFB power plants are driving up the need to use more and more PKS in Japan for biomass power generation without significant plant modifications.