Combating Concrete: Alternative and Sustainable Building Materials

Around 5% of the world’s CO2 emissions are caused by concrete production, so finding sustainable alternatives is essential to slowing down climate change. Fortunately, there are plenty of materials out there which are perfect for mass home construction, without the same ecological damage. If you want to continue to do meaningful things, such as travel the world or live in safe and comfortable accommodation, then finding alternative building materials is the route to doing this sustainably.

Hemp Concrete Substitute

By compacting hemp and lime, it is possible to create a building block comparable to concrete. Unlike concrete, however, hemp absorbs carbon dioxide rather than emits it. This means that during the production process, 1m3 of hemp concrete wall will suck up 165kg of CO2. It is just as durable and robust as regular concrete, but will require cannabis legalisation before manufacture can begin.

Nigerians are building fireproof, bulletproof, and eco-friendly homes with plastic bottles and mud

In countries where the plant is already legal to produce, then the switch to hemp alternative building material should begin immediately. Hemp plastic is an attractive sustainable building material which holds great potential worldwide.

Bamboo and Straw

Wood has long been a popular home building material, but not all plants are equally green. Bamboo has the quickest regrowth time of any plant, meaning that it can be replaced as quickly as it is cut down. It is strong and durable. Meanwhile, straw, when packed tightly, is a perfect eco-friendly insulation material. Together, this makes the most environmentally conscious wooden cabin.

In the debate of manufactured vs modular cabins, the latter tends to be preferred due to its rigidity and durability, while the former is more affordable. By constructing modular bamboo cabins, however, you are able to produce a long-lasting, energy efficient home at a much cheaper cost.

Reused Plastic Waste

The world purchases a million plastic bottles a minute or 480 billion a year. We need to seriously start thinking about how we can reduce our consumption of single use plastics, but also what to do with the waste in the meantime.

One thing that the bottles can be used for is the construction of houses. When filled with sand and stacked together, they form a durable and insulating wall. In some countries, this is being used as a way to bring affordable housing to those living in poverty. It is certainly a creative way to build homes without using more of the Earth’s precious resources.

Final Thoughts

There are so many alternatives to concrete out there. Governments and construction companies need to come together to move towards sustainable building practices. This will help to ensure that everyone has a safe place to call home, while recycling resources and cleaning the carbon dioxide out of the atmosphere.

Composting with Worms

Vermicomposting is a type of composting in which certain species of earthworms are used to enhance the process of organic waste conversion and produce a better end-product. It is a mesophilic process utilizing microorganisms and earthworms. Earthworms feeds the organic waste materials and passes it through their digestive system and gives out in a granular form (cocoons) which is known as vermicompost.

Worm

Simply speaking, vermicompost is earthworm excrement, called castings, which can improve biological, chemical, and physical properties of the soil. The chemical secretions in the earthworm’s digestive tract help break down soil and organic matter, so the castings contain more nutrients that are immediately available to plants.

Production of Vermicompost

A wide range of agricultural residues, such as straw, husk, leaves, stalks, weeds etc can be converted into vermicompost. Other potential feedstock for vermicompost production are livestock wastes, poultry litter, dairy wastes, food processing wastes, organic fraction of MSW, bagasse, digestate from biogas plants etc.

Earthworms consume organic wastes and reduce the volume by 40–60 percent. Each earthworm weighs about 0.5 to 0.6 gram, eats waste equivalent to its body weight and produces cast equivalent to about 50 percent of the waste it consumes in a day. The moisture content of castings ranges between 32 and 66 percent and the pH is around 7. The level of nutrients in compost depends upon the source of the raw material and the species of earthworm.

Types of Earthworms

There are nearly 3600 types of earthworms which are divided into burrowing and non-burrowing types. Red earthworm species, like Eisenia foetida, and are most efficient in compost making. The non-burrowing earthworms eat 10 percent soil and 90 percent organic waste materials; these convert the organic waste into vermicompost faster than the burrowing earthworms.

They can tolerate temperatures ranging from 0 to 40°C but the regeneration capacity is more at 25 to 30°C and 40–45 percent moisture level in the pile. The burrowing types of earthworms come onto the soil surface only at night. These make holes in the soil up to a depth of 3.5 m and produce 5.6 kg casts by ingesting 90 percent soil and 10 percent organic waste.

Types of Vermicomposting

The types of vermicomposting depend upon the amount of production and composting structures. Small-scale vermicomposting is done to meet personal requirements and farmers/gardeners can harvest 5-10 tons of vermicompost annually.

On the other hand, large-scale vermicomposting is done at commercial scale by recycling large quantities of organic waste in modern facilities with the production of more than hundreds of tons annually.

Benefits of Vermicompost

The worm castings contain higher percentage of both macro and micronutrients than the garden compost. Apart from other nutrients, a fine worm cast is rich in NPK which are in readily available form and are released within a month of application. Vermicompost enhances plant growth, suppresses disease in plants, increases porosity and microbial activity in soil, and improves water retention and aeration.

Vermicompost also benefits the environment by reducing the need for chemical fertilizers and decreasing the amount of waste going to landfills. Vermicompost production is trending up worldwide and it is finding increasing use especially in Western countries, Asia-Pacific and Southeast Asia.

Vermicompost Tea

A relatively new product from vermicomposting is vermicompost tea which is a liquid produced by extracting organic matter, microorganisms, and nutrients from vermicompost. Unlike vermicompost and compost, this tea may be applied directly to plant foliage, reportedly to enhance disease suppression. Vermicompost tea also may be applied to the soil as a supplement between compost applications to increase biological activity.

Potential Market

Vermicompost may be sold in bulk or bagged with a variety of compost and soil blends. Markets include home improvement centers, nurseries, landscape contractors, greenhouses, garden supply stores, grocery chains, flower shops, discount houses, indoor gardens, and the general public.

11 Ways College Students Can Save Paper

Paper, in all of its forms, is one of the most useful and versatile products. It is also one of the most widely used item for college students. The bad news is that our use of paper has some pretty intense impacts on the environment. These include water and air pollution, deforestation, and the accumulation of paper waste in landfills.

The good news is that every individual can play a role in helping to eliminate the damage done by the use of and production of paper products. Now, this is the point where many readers will think of themselves, “I recycle. Isn’t that enough?”

The truth is, while recycling certainly helps, it doesn’t eliminate the problems our use of paper creates. In fact, the recycling process itself has an environmental cost.  Keep recycling for sure, but also consider ways in which you can reduce the amount of paper you use. Here are eleven ways you can get started.

1. Make your subscriptions digital

Whether your interests are in technology, fashion, current events, music or something else, magazines are full of useful information. The problem is that once you’re done with them, your choices are to recycle them, throw them out, or let them collect dust. None of these things are good for the environment.

Instead, convert your paper subscriptions to digital. Not only will you help the environment, you’ll save space as well. Even better, digital copies of magazines are searchable. This means you can find the articles you want with ease.

2. Donate old newspapers and magazines

If you do have hard copies of newspapers and magazines at home, don’t throw them out or recycle them. There may be places that are happy to take them off your hands. Your local community center, retirement homes, hospitals and homeless shelters are often in search of reading materials for their clients.

3. Use double-sided printing

There is no way to avoid printing altogether, but you may be able to reduce the paper you use when you do print. Whenever possible use double-sided printing. You can even print more than one page per side. Also, experiment line spacing and font size. With a few adjustments, you can significantly reduce the amount of paper you print over time. Encourage your friends, even your University and College, and your community to do the same.

4. Get your statements online

If you are still receiving your bank statements and billing notices via snail mail that’s a problem. Not only are you getting your paper bills and statements, chances are you’re receiving inserts, coupons, and other junk. Convert to paperless mode and eliminate all of this.

5. Use a blackboard or whiteboard

Shopping lists, reminders, and notes to your roommates represent just a few of the things you likely jot down and have scattered about your place. You aren’t alone. Those bits and pieces of paper add up. You can replace these by simply hanging up a whiteboard or blackboard in a convenient spot.

If somebody needs to jot something down, they can use that instead of wasting paper. If you need something a bit more portable, simply snap a picture with your phone.

6. Get a digital calendar

You also don’t need paper to stay on top of your schedule or to coordinate with friends and family members. Instead, choose a digital calendar that works for you. Then arrange to share calendars with those friends and family members. With most online calendars you can create to-do lists, set alarms, and send out reminders.

7. Give old newspapers to animal shelter

Your local animal shelter or rescue might be thrilled to get your old newspapers. They use these for bedding and as cage liners.  Newspapers can also be used to help insulate winter shelters for feral cat colonies.

8. Use washcloths and hand towels

There is no doubt that paper towels and napkins are useful. Many of us use them while we’re eating, to wipe up spills, for cleaning, even for covering food in the microwave. The problem is that once we’re done all of those paper products go directly into the trash. That’s wasteful and bad for the environment. Instead, invest in cloth alternatives.

Washcloths and hand towels are exceptionally cheap. Cloth diapers last forever and are amazing for cleaning. Even old worn-out clothing can be cut up and used as dust rags.

9. Take notes digitally

At this point, there should be little or no occasions where you need to take notes on paper. There are simply too many options for taking notes digitally, not to take advantage of this. Save paper by using an app, such as Evernote, to take and organize your notes.

Use voice to text, or simply type up your notes in your favorite word processor. Not only will your digital notes save paper, you’ll be better able to create quality essays and research papers. If you need help to turn these notes into better papers, check out essay editing reviews. Save the planet, and improve your grades.

In some cases, you don’t need to take notes at all. See if your instructors save handouts and lecture notes online. Then, simply use these as reference materials.

10. Reduce paper use at the grocery store

Hopefully, you have ditched single-use plastic and paper bags for reusable ones. If not, this is a great place to start. However, that’s just the beginning. There are other ways to reduce paper use while you shop.

First, hit the bulk bins for your dried goods. Instead of using the plastic or paper bags provided, bring your own reusable containers. Next, pay attention to packaging as you shop. You’ll be amazed at the amount of paper and plastic that is wasted through extra packaging. Be a conscientious shopper, and buy products that use the least amount of paper material.

11. Praise brands that use less paper

While you shop, pay attention to which brands are responsible in their use of paper and which brands are not. Then, let your thoughts be known. If a brand is behaving responsibly in this area, contact them and let you know you appreciate it and will be buying their products.

If not, contact them with your concerns. Believe it or not, companies do care what you think, and if they hear from enough people they might change their behaviors.

Final thoughts 

Paper waste is a huge problem at colleges and universities. In fact, the issue can seem overwhelming. However, if every individual would change a few of their habits with regard to paper consumption, there would be a great impact. You can get started with these steps.

5 Creative Ways to Repurpose Used Auto Parts

There comes a time in every automobile’s life where it’s parts can serve a different purpose, whether it’s recycling, or reusing them in a way that can prove useful to you. It’s not wrong to take your car to the junkyard and salvage what you can for some extra money, but it’s also great to handle it creatively. Take a look below at how you can do just that.

Why Recycling is Great

If you don’t want to go through the hassle of taking your car to the junkyard and waiting for the possibility of getting those parts sold or not. You can actually do something that can be both good for the environment and helpful to you. Most of these parts can be removed and attached to new and better things to give it a different purpose. A new life for these parts is suitable for people who are nostalgic and just can’t say goodbye to their old car, now it can live on with you. You just got to think about what you can use them for.

Here are 5 creative ways to repurpose used auto parts:

1. Using Coils as Paper Holders

Do you know those swirly metal coils in your car? You can use those for something very useful, as there is a way where you can take advantage of the spaces between each ring of those coil springs. You can restore the metal and deal with any rust by removing it entirely and making it clean and smooth. Then you have yourself your very own car-themed paper holder; you can use it for your mail, work files, and folders. Because it’s metal or steel, and old ones at that, it’s better to stick to papers only and not use it for plates, for example.

2. New Life For Your Catalytic Converter

Every car has this part that serves as an exhaust emission control device; it basically catalyzes a redox reaction that helps decrease the toxic gases and pollutants from the car’s combustion engine. But when it’s depreciated and not working; it’s time to research and find the right guide of scrap catalytic converters value determination, and you might actually make some money out of it. You can take it to a reputable establishment that specializes in recycling catalytic converters and get it de-canned to reuse its platinum material for making things like precious jewelry, dental work, fountain pens, forensic staining, and decoration purposes. It is really beneficial and you can get high returns from de-canning them that way.

3. New Purpose For Door and Window Handles

The handles for both car doors and windows are very unique and their style can be integrated into your furniture at home. You can use them as drawer and cabinet pull and they can also fit the redecoration plans of your home. It’s a perfect idea for car enthusiasts, rooms for little boys, or your garage drawers and cabinets. It can be easily removed from the pull car door and attached to the holes without a problem.

4. Make a Table Out of a Car Ramp

Another way where you can use old car parts for furniture is to take the old car ramps and position it in ways where they can function as an entryway or coffee table. It’s actually very chic and can be beautifully matched with the rest of your furniture after you clean and paint it, giving it that rustic look that you always wanted in your home. Your guests would never believe that this cool table was an old car part, and it gives you a nice conversation or ice-breaker to talk about it during visits.

5. Get Yourself a Car Themed Squeegee

The old car’s windshield wipers can have a purpose again to do what they do best; you can remove it from your car, clean it up nice, and then attach them to a long handle or broomstick. They might prove very handy when it’s spring cleaning season, and it’s very useful to reach those hard areas in the ceiling or high windows. You can use this modified squeegee to clean and dust off anything in your home. So your old car part can live on making your life easier when you clean.

There are so many ways for you to make use of the old used car parts that you own; just because its life is over, it doesn’t mean that there aren’t different ways to give it life again. It all depends on your creativity and what you want; the possibilities are limitless when it comes to recycling these parts.

33 Foot Whale Dies From Eating Rubbish

This is a true and very sad rubbish clearance story. While this particular incident is certainly a case of “a picture is worth a thousand words” (or more!), we hope that our words give ammunition to those who are working toward positive change to keep our waste removal out of our oceans.

garbage-ocean

A Gruesome Ghastly Sight

Usually, the sight of a majestic sperm whale is such a magical moment, most people try to freeze frame the image in their mind. In fact, many people stop breathing momentarily they are so excited to see such a magnificent creature! However, this was not the reaction people had on February 27 when a thirty-three foot, totally emaciated, sperm whale washed up dead on Cabo de Palos Beach in southwestern Spain. It was not at all a wondrous sight… it was a gruesome ghastly sight… one of those images that people would prefer to block from their mind but can’t no matter how hard they try!

The sight of this gigantic creature, lying there dead, the life sucked out of it from eating our rubbish clearance, is heartbreaking to everyone who has viewed the scene either in person or via picture. It sent shock waves across the environmental community. Many shared images of the ghostly dead sperm whale on social media. All who saw it seemed utterly horrified, many vowing to do something about it. The mantra seemed to be “Shame on us for allowing this to happen!”

The deceased sperm whale, a juvenile male, weighed in at 6.5 metric tonnes (14,330 pounds, 5900 kilograms). While this may seem massive to a human weighting a mere 175 pounds, it is about seven times less than what male sperm whales usually weigh. He weighed so much less than a juvenile male sperm whale is supposed to weigh, the idiomatic expression, “he was skin and bones,” would not even begin to cover his physical state. It was quite obvious from the pictures that he literally starved to death.

Cause of such a grueling death

Experts at the El Valle Wildlife Recovery Centre  determined that his stomach and intestines were filled with twenty-nine kilograms (sixty-four pounds) of garbage! These included discarded cans, netting, ropes, and plastic bags. With all this rubbish compacting his digestive system, he could not digest real food and he starved to death. In addition, he had a severe stomach infection, most likely because one of the rubbish clearance items he swallowed ripped a tear in his stomach lining.

The pain and torture this young sperm whale must have endured before he finally died and washed ashore to shame humanity must have been extensive. How unjust it is to this creature to not only die but actually die in a way that was very likely slow and tremendously painful.

What do we as humans owe his species for the sin of his death? Should his death be the impetus to do more to rid our oceans of rubbish removal? Should we plaster this image of this whales lifeless emaciated body on anti-litter posters even though it makes us feel awkward and ashamed to see it?

Sperm Whale – A Magnificent Creature

Sperm whales have been forever immortalized in the great novel, Moby Dick, so they will live for eternity on in the human psyche even if they go extinct. However, unlike the dinosaurs that roamed our planet before our time, and went extinct long before we made our great migration out of Africa into the fertile crescent, sperm whales have shared our planet for all of human history.

Many members of our species have come eye to eye with this beast and we must answer for our crimes of littering that has been proven to be the direct cause of this whales death, and in fact, threatens his entire species.

The International Union for Conservation of Nature (IUCN) classifies the conservation status of sperm whales as “vulnerable” which is only one small step away from becoming endangered — and some experts actually argue that sperm whales are already endangered. While it is impossible to do an accurate census of sperm whales, scientists estimate there about 200,000 of these whales left. Keep in mind, there used to be many millions of them in our oceans but they were a favorite of whaling expeditions who hunted them for their valuable blubber, meat, and even their bones.

Sperm whales are now protected under international law so most countries no longer hunt them. However, the Japanese still have a taste for sperm whale and several are harvested for supposed “scientific research” every year. The whale meat from these scientific specimens does get sold in Japanese markets. However, even given this loophole in the law that protects sperm whales, the direct human harvesting of sperm whales pales in comparison to how threatening our rubbish clearance is to the endurance of this species.

Time for Introspection

The sperm whale that washed up dead on Cabo de Palos Beach is only one of many who have died due to eating rubbish clearance. Plastic bags are the biggest culprit but all rubbish in our oceans poses a dire threat to sperm whales and other marine mammals. What we do about our rubbish clearance problem over the next few decades will likely determine the fate of this entire species and many other marine mammals.

The stomach and intestines of sperm whale was filled with 29 kg of garbage

It is important to note how intelligent sperm whales are though to be. Sperm whales have the biggest brains in the animal kingdom, weighing in at five times that of the human brain, with an imposing volume of eight thousand cubic centimeters! They’re also known to express obvious emotions. What would they say to use if we could somehow crack the sperm whale language code? Would they beg us to remove our rubbish from their habitat? Would they appeal to our better angels?

Identifying the Enemies

Sperm whales eat mostly “garden variety” squid, less than a foot in length, but in an ironic twist, their worst enemy is thought to be the giant squid. These colossal squid are usually between ten to thirteen metres (33 to 43 feet). Serrated sucker scars from these ginormous squid are often found on sperm whale bodies. While sperm whales may eat these giant squid, they put up a good fight at minimum and may even be able to kill, or at least harm significantly, a sperm whale at times.

However, the rubbish clearance that we as humans fill our oceans with cause more damage to sperm whales than all the giant squid in the world. We must face the hard reality that our rubbish clearance is directly responsible for the death of sperm whales, and many other marine mammals, and many other animal species for that matter. We must own up to that fact and start seriously working toward finding solutions.

If you have pictures of sperm whales, please send them to Clearabee’s Facebook page in honor of the most recent sperm whale death at the hands of our rubbish clearance. Clearabee is the leading on demand rubbish clearance company in the UK.

Waste Disposal Methods: Perspectives for Africa

Waste disposal methods vary from city to city, state to state and region to region. It equally depends on the kind and type of waste generated. In determining the disposal method that a city or nation should adopt, some factors like type, kind, quantity, frequency, and forms of waste need to be considered.

For the purpose of this article, we will look at the three common waste disposal methods in Africa and the kind of waste they accept.

Open Dumping/Burning

This is the crudest means of disposing of waste and it is mostly practiced in rural areas, semi-urban settlements, and undeveloped urban areas. For open dumping or open burning, every type and form of waste (including household waste, hazardous wastes, tires, batteries, chemicals) is dumped in an open area within a community or outside different homes in a community and same being set on fire after a number of days or when the waste generator or community feels it should be burnt.

There is no gainsaying that the negative health and environmental impact of such practice are huge only if the propagators know better.

Controlled Dumping

This is apparent in most States in Nigeria, if not all and some cities in Africa like Mozambique, Ghana, Kenya, Cameroon, to mention but a few. It is a method of disposing of all kinds of waste in a designated area of land by waste collectors and it is usually controlled by the State or City Government.

Opening burning of trash is a common practice across Africa

Controlled dumps are commonly found in urban areas and because they are managed by the government, some dumps do have certain features of a landfill like tenure of usage, basic record keeping, waste covering, etc. Many cities in Nigeria confuse the practice of controlled dumping as landfilling but this not so because a landfill involves engineering design, planning, and operation.

Sanitary Landfill

A sanitary landfill is arguably the most desired waste management option in reducing or eliminating public health hazards and environmental pollution. The landfill is the final disposal site for all forms and types of waste after the recyclable materials must have been separated for other usages and other biodegradables have been extracted from the waste for use as compost, heat, or energy; or after incineration. These extractions can be done at household level or Material Recovery Facilities (MRFs) operated by the government or private individuals.

As desirable as a landfill is, so many factors need to be put into consideration in its siting and operation plus it requires a huge investment in construction and operation. Some of these factors include but not limited to distance from the residential area, proximity to water bodies, water-table level of the area the landfill is to be sited, earth material availability, and access road.

Note: The original version of the article was published on Waste Watch Africa website at this link.

Solid Waste Management in Morocco

Solid waste management is one of the major environmental problems threatening the Kingdom of Morocco. More than 5 million tons of solid waste is generated across the country with annual waste generation growth rate touching 3 percent. The proper disposal of municipal solid waste in Morocco is exemplified by major deficiencies such as lack of proper infrastructure and suitable funding in areas outside of major cities.

solid_waste_morocco

According to the World Bank, it was reported that before a recent reform in 2008 “only 70 percent of urban wastes was collected and less than 10 percent of collected waste was being disposed of in an environmentally and socially acceptable manner. There were 300 uncontrolled dumpsites, and about 3,500 waste-pickers, of which 10 percent were children, were living on and around these open dumpsites.”

It is not uncommon to see trash burning as a means of solid waste disposal in Morocco.  Currently, the municipal waste stream is disposed of in a reckless and unsustainable manner which has major effects on public health and the environment.  The lack of waste management infrastructure leads to burning of trash as a form of inexpensive waste disposal.  Unfortunately, the major health effects of burning trash are either widely unknown or grossly under-estimated to the vast majority of the population in Morocco.

The good news about the future of Morocco’s MSW management is that the World Bank has allocated $271.3 million to the Moroccan government to develop a municipal waste management plan.  The plan’s details include restoring around 80 landfill sites, improving trash pickup services, and increasing recycling by 20%, all by the year 2020. While this reform is expected to do wonders for the urban population one can only hope the benefits of this reform trickle down to the 43% of the Moroccan population living in rural areas, like those who are living in my village.

Needless to say, even with Morocco’s movement toward a safer and more environmentally friendly MSW management system there is still an enormous population of people including children and the elderly who this reform will overlook.   Until more is done, including funding initiatives and an increase in education, these people will continue to be exposed to hazardous living conditions because of unsuitable funding, infrastructure and education.

Circular Economy: Past, Present and Future

For a society accustomed to the achievements of a linear economy, the transition to a circular economic system is a hard task even to contemplate. Although the changes needed may seem daunting, it is important to remember that we have already come a long way. However, the history of the waste hierarchy has taught that political perseverance and unity of approach are essential to achieving long term visions in supply chain management.

Looking back, it is helpful to view the significance of the Lansink’s Ladder in the light of the sustainability gains it has already instigated. From the outset, the Ladder encountered criticism, in part because the intuitive preference order it expresses is not (and has never been put forward as) scientifically rigorous. Opposition came from those who feared the hierarchy would impede economic growth and clash with an increasingly consumerist society. The business community expressed concerns about regulatory burdens and the cost of implementing change.

Circular-Economy

However, such criticism was not able to shake political support, either in Holland where the Ladder was adopted in the Dutch Environmental Protection Act of 1979, or subsequently across Europe, as the Waste Hierarchy was transposed into national legislation as a result of the revised Waste Framework Directive.

Prevention, reuse and recycling have become widely used words as awareness has increased that our industrial societies will eventually suffer a shortage of raw materials and energy. So, should we see the waste hierarchy as laying the first slabs of the long road to a circular economy? Or is the circular economy a radical new departure?

Positive and negative thinking

There have been two major transitionary periods in waste management: public health was the primary driver for the first, from roughly 1900 to 1960, in which waste removal was formalised as a means to avoid disease. The second gained momentum in the 1980s, when prevention, reuse and recovery came on the agenda. However, consolidation of the second transition has in turn revealed new drivers for a third. Although analysing drivers is always tricky – requiring a thorough study of causes and effects – a general indication is helpful for further discussion. Positive (+) and negative (-) drivers for a third transition may be:

(+) The development of material supply chain management through the combination of waste hierarchy thinking with cradle to cradle eco design;

(+) The need for sustainable energy solutions;

(+) Scarcity of raw materials necessary for technological innovation; and

(+) Progressive development of circular economy models, with increasing awareness of social, financial and economic barriers.

(-) Growth of the global economy, especially in China and India, and later in Africa;

(-) Continued growth in global travel;

(-) Rising energy demand, exceeding what can be produced from renewable energy sources and threatening further global warming;

(-) Biodiversity loss, causing a further ecological impoverishment; and

(-) Conservation of the principle of ownership, which hinders the development of the so-called ‘lease society’. 

A clear steer

As the direction, scale and weight of these drivers are difficult to assess, it’s necessary to steer developments at all levels to a sustainable solution. The second transition taught that governmental control appears indispensable, and that regulation stimulates innovation so long as adequate space is left for industry and producers to develop their own means of satisfying their legislated responsibilities.

The European Waste Framework Directive has been one such stimulatory piece of legislation. Unfortunately, the EC has decided to withdraw its Circular Economy package, which would otherwise now be on track to deliver the additional innovation needed to achieve its goals – including higher recycling targets. Messrs. Juncker and Timmermans must now either bring forward the more ambitious legislation they have hinted at, or explain why they have abandoned the serious proposals of their predecessors.

Perhaps the major differences between Member States and other countries may require a preliminary two-speed policy, but any differences in timetable between Western Europe and other countries should not stand in the way of innovation, and differences of opinion between the European Parliament and the Commission must be removed for Europe to remain credible.

Governmental control requires clear rules and definitions, and for legislative terminology to be commensurate with policy objectives. One failing in this area is the use of the generic term ‘recovery’ to cover product reuse, recycling and incineration with energy recovery, which confuses the hierarchy’s preference order. The granting of R1 status to waste incineration plants, although understandable in terms of energy diversification, turns waste processors into energy producers benefiting from full ovens. Feeding these plants reduces the scope for recycling (e.g. plastics) and increases COemissions. When relatively inefficient incinerators still appear to qualify for R1 status, it offers confusing policy signals for governments, investors and waste services providers alike.

The key role for government also is to set clear targets and create the space for producers and consumers to generate workable solutions. The waste hierarchy’s preference order is best served by transparent minimum standards, grouped around product reuse, material recycling or disposal by combustion. For designated product or material categories, multiple minimum standards are possible following preparation of the initial waste streams, which can be tightened as technological developments allow.

Where the rubber meets the road

As waste markets increase in scale, are liberalised, and come under international regulation, individual governmental control is diminished. These factors are currently playing out in the erratic prices of secondary commodities and the development of excess incinerator capacity in some nations that has brought about a rise in RDF exports from the UK and Italy. Governments, however, may make a virtue of the necessity of avoiding the minutiae: ecological policy is by definition long-term and requires a stable line; day to day control is an impossible and undesirable task.

The road to the third transition – towards a circular economy – requires a new mind-set from government that acknowledges and empowers individuals. Not only must we approach the issue from the bottom-up, but also from the side and above. Consumer behaviour must be steered by both ‘soft’ and ‘hard’ controls: through information and communication, because of the importance of psychological factors; but also through financial instruments, because both consumers and industry are clearly responsive to such stimuli.

Where we see opposition to deposit return schemes, it comes not from consumers but from industry, which fears the administrative and logistical burden. The business community must be convinced of the economic opportunities of innovation. Material supply chain management is a challenge for designers and producers, who nevertheless appreciate the benefits of product lifetime extensions and reuse. When attention to environmental risks seems to lapse – for example due to financial pressures or market failures – then politics must intervene.

Government and industry should therefore get a better grip on the under-developed positive drivers of the third transition, such as eco design, secondary materials policy, sustainable energy policy, and research and development in the areas of bio, info, and nanotechnologies. 

Third time’s the charm

Good supply chain management stands or falls with the way in which producers and consumers contribute to the policies supported by government and society. In order that producers and consumers make good on this responsibility, government must first support their environmental awareness.

The interpretation of municipal duty of care determines options for waste collection, disposal and processing. Also essential is the way in which producer responsibility takes shape, and the government must provide a clear separation of private and public duties. Businesses may be liable for the negative aspects of unbridled growth and irresponsible actions. It is also important for optimal interaction with the European legislators: a worthy entry in Brussels is valuable because of the international aspects of the third transition. Finally, supply chain management involves the use of various policy tools, including:

  • Rewarding good behaviour
  • Sharpening minimum standards
  • Development and certification of CO2 tools
  • Formulation and implementation of end-of-waste criteria
  • Remediation of waste incineration with low energy efficiency
  • Restoration or maintenance of a fair landfill tax
  • Application of the combustion load set at zero

‘Seeing is believing’ is the motto of followers of the Apostle Thomas, who is chiefly remembered for his propensity for doubt. The call for visible examples is heard ever louder as more questions are raised around the feasibility of product renewal and the possibilities of a circular economy.

Ultimately, the third transition is inevitable as we face a future of scarcity of raw materials and energy. However, while the direction is clear, the tools to be employed and the speed of change remain uncertain. Disasters are unnecessary to allow the realisation of vital changes; huge leaps forward are possible so long as government – both national and international – and society rigorously follow the preference order of the waste hierarchy. Climbing Lansink’s Ladder remains vital to attaining a perspective from which we might judge the ways in which to make a circle of our linear economy.

Note: The article is being republished with the permission of our collaborative partner Isonomia. The original article can be found at this link.

Waste Management in Peshawar

Peshawar is among the biggest cities in Pakistan with estimated population of 4 million inhabitants. Like most of the cities in Pakistan, solid waste management is a big challenge in Peshawar as the city generate 600-700 tons of municipal waste every day, with per capita generation of about 0.3 to 0.4 kg per day. Major part of the Peshawar population belongs to low and middle income area and based upon this fact, waste generation rate per capita varies in different parts of the city.

peshawar

Municipal solid waste collection and disposal services in the city are poor as approximately 60 per cent of the solid wastes remain at collection points, or in streets, where it emits a host of pollutants into the air, making it unacceptable for breathing. A significant fraction of the waste is dumped in an old kiln depression around the southern side of the city where scavengers, mainly comprising young children, manually sort out recyclable materials such as iron, paper, plastics, old clothes etc.

Peshawar has 4 towns and 84 union councils (UCs). Solid waste management is one of their functions. Now city government has planned to build a Refuse Derived Fuel (RDF), Composting Plant and possibly a Waste to Energy Power Plant which would be a land mark of Peshawar city administration.

The UCs are responsible for door to door collection of domestic waste and a common shifting practice with the help of hand carts to a central pick-up points in the jurisdiction of each UC. Town Council is responsible for collection and transporting the mixed solid waste to the specified dumps which ends up at unspecified depressions, agricultural land and roadside dumps.

Open dumping of municipal wastes is widely practiced in Peshawar

Presently, there are two sites namely Hazar Khwani and Lundi Akhune Ahmed which are being used for the purpose of open dumping. Waste scavenging is a major activity of thousands of people in the city. An alarming and dangerous practice is the burning of the solid waste in open dumps by scavengers to obtain recyclables like glass and metals.

Almost 50 percent of recyclables are scavenged at transfer stations from the waste reaching at such points. The recyclable ratio that remains in the house varies and cannot be recovered by the authorities unless it is bought directly from the households. Only the part of recyclables reaching a certain bin or secondary transfer station can be exploited.

In some areas of city where waste is transported by private companies from transfer points to the disposal site out study found that scavengers could only get about 35% of the recyclables from the waste at transfer station. Considering the above fact, it can be inferred that in case municipality introduces efficient waste transfer system in the city, the amount of recyclables reaching the disposal facility may increase by 30% of the current amount. In case house-to-house collection is introduced the municipality will be able to take hold of 90% of the recyclables in the waste stream being generated from a household.

Waste Management Outlook for India

Waste management crisis in India should be approached holistically; while planning for long term solutions, focus on addressing the immediate problems should be maintained. National and local governments should work with their partners to promote source separation, achieve higher percentages of recycling and produce high quality compost from organics. While this is being achieved and recycling is increased, provisions should be made to handle the non-recyclable wastes that are being generated and will continue to be generated in the future.

Recycling, composting and waste-to-energy are all integral parts of the waste disposal solution and they are complementary to each other; none of them can solve India’s waste crisis alone. Any technology should be considered as a means to address public priorities, but not as an end goal in itself. Finally, discussion on waste management should consider what technology can be used, to what extent in solving the bigger problem and within what timeframe.

Experts believe India will have more than nine waste-to-energy projects in different cities across India in the next three years, which will help alleviate the situation to a great extent. However, since waste-to-energy projects are designed to replace landfills, they also tend to displace informal settlements on the landfills. Here, governments should welcome discussions with local communities and harbor the informal recycling community by integrating it into the overall waste management system to make sure they do not lose their rights for the rest of the city’s residents.

This is important from a utilitarian perspective too, because in case of emergency situations like those in Bengaluru, Kerala, and elsewhere, the informal recycling community might be the only existing tool to mitigate damage due to improper waste management as opposed to infrastructure projects which take more than one year for completion and public awareness programs which take decades to show significant results.

Involvement of informal recycling community is vital for the success of any SWM program in India

Indian policy makers and municipal officials should utilize this opportunity, created by improper waste management examples across India, to make adjustments to the existing MSW Rules 2000, and design a concrete national policy based on public needs and backed by science. If this chance passes without a strong national framework to improve waste management, the conditions in today’s New Delhi, Bengaluru, Thiruvananthapuram, Kolkata, Mumbai, Chennai, Coimbatore and Srinagar will arise in many more cities as various forcing factors converge. This is what will lead to a solid waste management crisis affecting large populations of urban Indians.

The Indian Judiciary proved to be the most effective platform for the public to influence government action. The majority of local and national government activity towards improving municipal solid waste management is the result of direct public action, funneled through High Courts in each state, and the Supreme Court. In a recent case (Nov 2012), a slew of PILs led the High Court of Karnataka to threaten to supersede its state capital Bengaluru’s elected municipal council, and its dissolution, if it hinders efforts to improve waste management in the city.

In another case in the state of Haryana, two senior officials in its urban development board faced prosecution in its High Court for dumping waste illegally near suburbs. India’s strong and independent judiciary is expected to play an increasing role in waste management in the future, but it cannot bring about the required change without the aid of a comprehensive national policy.