The Global Green Economy Index 2016 – Key Findings

green-economyThe 5th edition of the Global Green Economy Index (GGEI) is a data-driven analysis of how 80 countries perform in the global green economy, as well as how expert practitioners rank this performance. Since its launch in 2010, the GGEI has signaled which countries are making progress towards greener economies, and which ones are not. The comparison of national green performance and perceptions of it revealed through the GGEI framework is more important than ever today.

Top Performers

Sweden is again the top performing country in the 2016 GGEI, followed by the other “Nordics” and Switzerland, Germany, and Austria. Amidst these strong results, the GGEI identified areas where these countries can improve their green performance further. These opportunities – focused around innovation, green branding and carbon efficiency – could propel their national green performance forward even more in the future.

Developing countries in Africa and Latin America–including Ethiopia, Zambia, Brazil, and Costa Rica– also perform well in this new GGEI edition, ranking in the top fifteen for performance. While Brazil and Costa Rica receive similarly strong results on our perception survey, Ethiopia and Zambia do not, suggesting a need for better green branding and communications in these two African countries.

Like in 2014, Copenhagen is the top green city, followed by Stockholm, Vancouver, Oslo and Singapore. This new GGEI only collected perception values for green cities as lack of data availability continues to impede our efforts to develop a comprehensive green city performance index. Given the significant role of cities in the global green economy, city-level data development is an urgent priority.

Laggards

No country in Asia ranks well for performance on this new GGEI, with the exception of Cambodia, which was the most improved country as compared to the last edition, rising 22 spots to 20th overall. China, India, Indonesia, Japan and South Korea do better on the perception side of the GGEI, but continue to register concerning performance results.

While many European Union (EU) members perform near the top of this GGEI edition, others including the Czech Republic, Estonia, Poland, Romania and Slovakia rank near the bottom. These results are worrisome and suggest uneven national green performance across the EU.

Many of the countries with high annual GDP growth today rank poorly on the GGEI, further highlighting the limits to GDP as a growth indicator. These countries are mostly in Asia (Malaysia, Thailand, Philippines) and Africa (Nigeria, Tanzania).

The top green economy performers worldwide

The top green economy performers worldwide

Countries with a high reliance on fossil fuel extraction and export generally perform poorly on the GGEI, with a few exceptions. Kuwait, Qatar, Saudi Arabia and Russia all perform poorly while Norway and Canada do much better.

Continuing Trends

Rapidly growing economies, China and India continue to show performance weakness on the GGEI Markets & Investment dimension. Given the large investment required to achieve their climate targets, green investment promotion, cleantech innovation, and corporate sustainability should be developed further.

The United States ranks near the top of the GGEI perception survey and it is widely viewed as a vital market for green investment and innovation, yet overall the U.S. continues to have mediocre performance results, ranking 30th of the 80 countries covered. However, the GGEI found that U.S. company-level initiatives to green supply chains and reduce carbon footprints are accelerating.

Despite having a new prime minister, Australia continues to register a poor result on this new GGEI, ranking 55th of the 80 countries covered for performance. While green markets there are showing some strength, the overall carbon intensity of the Australian economy remains extremely high.

Hosting the annual Conference of Parties (COP) can positively impact the host country’s green brand. Yet this short-term image boost does not always translate to improved green performance in the longer-term, as demonstrated by the low GGEI performance results for Poland (COP19), Qatar (COP18) and South Africa (COP17).

The United Kingdom’s GGEI performance continues to lag behind its EU peers, ranking 25th of the 80 countries covered. While the UK does very well on both the perception and performance side of the Markets & Investment dimension, inconsistent policies supporting renewable energy and green growth continue to hurt the UK on other parts of the GGEI.

Note: The full report can be accessed here

Clean Energy Investment Forecast for 2016

renewables-investment-trendsGlobal interest in clean energy technologies reached new heights last year and 2016 promises to be another record-breaker. The year 2015 witnessed installation of more than 121 GW of renewable power plants, a remarkable increase of 30% when compared to 2014. With oil and gas prices tumbling out to unprecedented levels, 2016 should be a landmark year for all clean energy technologies. As per industry trends, solar power is expected to be the fastest-growing renewable power generation technology in 2016, closely followed by wind energy. Among investment hotspots, Asia, Africa and the Middle East will be closely watched this year.

Investment Forecast for 2016

Clean energy is rapidly becoming a part of mainstream investment portfolios all over the world. In 2016, a greater attention will be focused on renewable energy, mainly on account of the Paris Framework and attractive tax credits for clean energy investments in several countries, especially USA.

Infact, the increasing viability of clean energy is emerging as a game-changer for large-scale investors. The falling prices of renewable power (almost 10% per year for solar), coupled with slump in crude oil prices, is pulling global investors away from fossil fuel industry. At the 2016 UN Investor Summit on Climate Risk, former US vice president Al Gore said, “If this curve continues, then its price is going to fall “significantly below the price of electricity from burning any kind of fossil fuel in a few short years”.

There has been an astonishing growth in renewable generation in recent years. “A dozen years ago, the best predictors in the world told us that the solar energy market would grow by 2010 at the incredible rate of 1 GW per year,” said Gore. “By the time 2010 came around, they exceeded that by 17 times over. Last year, it was exceeded by 58 times over. This year, it’s on track to be exceeded by 68 times over. That’s an exponential curve.”

China will continue to dominate solar as well as wind energy sectors

China will continue to dominate solar as well as wind energy sectors

As per industry forecasts, China will continue its dominance of world PV market, followed closely by the US and Japan. Infact, USA is anticipated to overtake Japan as the second largest solar market this year. India, which is developing a highly ambitious solar program, will be a dark horse for cleantech investors. The top solar companies to watch include First Solar, Suntech, Canadian Solar, Trina Solar, Yingli Solar, Sharp Solar and Jinko Solar.

Morocco has swiftly become a role model for the entire MENA. The government’s target of 2GW of solar and 2GW of wind power by 2020 is progressing smoothly. As for solar, the 160MW Noor-1 CSP is already commissioned while Noor-2 and Noor-3 are expected to add a combined 350MW in 2017.

China will continue to lead the global wind energy market in 2016, and is on course to achieve its target of 200 GW of installed wind capacity by 2020. Other countries of interest in the wind sector will be Canada, Mexico, Brazil and South Africa. The major wind turbine manufacturers to watch are Siemens, Vestas, Goldwind, Gamesa and GE.

Conclusion

To sum up, the rapid growth of global renewable energy sector in the past few years is the strongest signal yet for investors and corporations to take the plunge towards green energy and low-carbon growth. As the UN chief Ban Ki-moon famously said, “It marks the beginning of the end of growth built solely on fossil fuel consumption. The once unthinkable has now become unstoppable.”

Waste-to-Energy in India: An Interview with Salman Zafar

waste-mountainIndia’s waste-to-energy sector, which kicked off in 1987, is still searching for a successful role model, even after tens of millions of dollars of investment. In recent years, many ambitious waste-to-energy projects have been established or are being planned in different parts of the country, and it is hoped that things will brighten up in the coming years. Salman Zafar, CEO of BioEnergy Consult, talks to Power Today magazine on India’s tryst with waste-to-energy and highlights major challenges and obstacles in making waste-to-energy a success story in India.

Power Today: What are the challenges that the Waste to Energy sector faces in the current scenario where there is a rejuvenated interest in clean energy? Do you think the buzz around solar and wind power has relegated the Waste to Energy sector to the back benches?

Salman Zafar: India’s experience with waste-to-energy has been lackluster until now. The progress of waste-to-energy sector in India is hampered by multiples issues including

  1. poor quality of municipal waste,
  2. high capital and O&M costs of waste-to-energy systems,
  3. lack of indigenous technology,
  4. lack of successful projects and failure of several ambitious projects,
  5. lack of coordination between municipalities, state and central governments,
  6. heavy reliance on government subsidies,
  7. difficulties in obtaining long-term Power Purchase Agreements (PPAs) with state electricity boards (SEBs)
  8. lukewarm response of banks and financial institutions and (9) weak supply chain.

Waste-to-energy is different from solar (or wind) as it essentially aims to reduce the colossal amount of solid wastes accumulating in cities and towns all over India. In addition to managing wastes, waste-to-energy has the added advantage of producing power which can be used to meet rapidly increasing energy requirements of urban India. In my opinion, waste-to-energy sector has attracted renewed interest in the last couple of years due to Swachch Bharat Mission, though government’s heavy focus on solar power has impacted the development of waste-to-energy as well as biomass energy sectors.

Power Today: India has a Waste to Energy potential of 17,000 MW, of which only around 1,365 MW has been realised so far. How much growth do you expect in the sector?

Salman Zafar: As per Energy Statistics 2015 (refer to http://mospi.nic.in/Mospi_New/upload/Energy_stats_2015_26mar15.pdf), waste-to-energy potential in India is estimated to be 2,556 MW, of which approximately 150 MW (around 6%) has been harnessed till March 2016.

The progress of waste-to-energy sector in India is dependent on resolution of MSW supply chain issues, better understanding of waste management practices, lowering of technology costs and flexible financial model. For the next two years, I am anticipating an increase of around 75-100 MW of installed capacity across India.

Power Today: On the technological front, what kinds of advancements are happening in the sector?

Salman Zafar: Nowadays, advanced thermal technologies like MBT, thermal depolymerisation, gasification, pyrolysis and plasma gasification are hogging limelight, mainly due to better energy efficiency, high conversion rates and less emissions. Incineration is still the most popular waste-to-energy technology, though there are serious emission concerns in developing countries as many project developers try to cut down costs by going for less efficient air pollution control system.

Power Today: What according to you, is the general sentiment towards setting up of Waste to Energy plants? Do you get enough cooperation from municipal bodies, since setting up of plants involves land acquisition and capital expenditure?

Salman Zafar: Waste-to-energy projects, be it in India or any other developing country, is plagued by NIMBY (not-in-my-backyard) effect. The general attitude towards waste-to-energy is that of indifference resulting in lukewarm public participation and community engagement in such projects.

Government should setup dedicated waste-to-energy research centres to develop lost-cost and low-tech waste to energy solutions

Government should setup dedicated waste-to-energy research centres to develop lost-cost and low-tech waste to energy solutions

Lack of cooperation from municipalities is a major factor in sluggish growth of waste-to-energy sector in India. It has been observed that sometimes municipal officials connive with local politicians and ‘garbage mafia’ to create hurdles in waste collection and waste transport. Supply of poor quality feedstock to waste-to-energy plants by municipal bodies has led to failure of several high-profile projects, such as 6 MW MSW-to-biogas project in Lucknow, which was shut down within a year of commissioning due to waste quality issues.

Power Today: Do you think that government policies are in tandem when it comes to enabling this segment? What policies need to be changed, evolved or adopted to boost this sector?

Salman Zafar: A successful waste management strategy demands an integrated approach where recycling and waste-to-energy are given due importance in government policies. Government should strive to setup a dedicated waste-to-energy research centre to develop a lost-cost and low-tech solution to harness clean energy from millions of tons of waste generated in India.

The government is planning many waste-to-energy projects in different cities in the coming years which may help in easing the waste situation to a certain extent. However, government policies should be inclined towards inclusive waste management, whereby the informal recycling community is not robbed of its livelihood due to waste-to-energy projects.

Government should also try to create favourable policies for establishment of decentralized waste-to-energy plants as big projects are a logistical nightmare and more prone to failure than small-to-medium scale venture.

Note: This interview was originally published in June 2016 edition of Power Today magazine. The unabridged version is available at this link

Rationale for Solid Waste Management

Some countries have achieved considerable success in solid waste management. But the rest of the world is grappling to deal with its wastes. In these places, improper management of solid waste continues to impact public health of entire communities and cities; pollute local water, air and land resources; contribute to climate change and ocean plastic pollution; hinder climate change adaptation; and accelerate depletion of forests and mines.

Compared to solid waste management, we can consider that the world has achieved significant success in providing other basic necessities like food, drinking water, energy and economic opportunities. Managing solid wastes properly can help improve the above services further. Composting organic waste can help nurture crops and result in a better agricultural yield. Reducing landfilling and building sanitary landfills will reduce ground and surface water pollution which can help provide cleaner drinking water. Energy recovery from non-recyclable wastes can satiate significant portion of a city’s energy requirement.

Inclusive waste management where informal waste recyclers are involved can provide an enormous economic opportunity to the marginalized urban poor. Additionally, a good solid waste management plan with cost recovery mechanisms can free tax payers money for other issues. In the case of India, sustainable solid waste management in 2011 would have provided

  • 9.6 million tons of compost that could have resulted in a better agricultural yield
  • energy equivalent to 58 million barrels of oil from non-recyclable wastes
  • 6.7 million tons of secondary raw materials to industries in the form of recyclable materials and livelihood to the urban poor

Solid waste management until now has only been a social responsibility of the corporate world or one of the services to be provided by the municipality and a non-priority for national governments. However, in Mumbai, the improperly managed wastes generate 22,000 tons of toxic pollutants like particulate matter, carbon monoxide, nitrous and sulfur oxides in addition to 10,000 grams of carcinogenic dioxins and furans every year. These numbers are only for the city of Mumbai. This is the case in cities all across the developing world. There are numerous examples where groundwater is polluted by heavy metals and organic contaminants due to solid waste landfills.

Solid waste management expenditure of above $ 1 billion per year competes with education, poverty, security and other sustainable initiatives in New York City. Fossil fuels for above 500,000 truck trips covering hundreds of miles are required to transport NYC’s waste to landfills outside the city and state. Similarly, New Delhi spends more than half of its entire municipal budget on solid waste management, while it is desperate for investments and maintenance of roads, buildings, and other infrastructure.

Solid waste management is not just a corporate social responsibility or a non-priority service anymore. Improper waste management is a public health and environmental crisis, economic loss, operational inefficiency and political and public awareness failure. Integrated solid waste management can be a nation building exercise for healthier and wealthier communities. Therefore, it needs global attention to arrive at solutions which span across such a wide range of issues.

Note: Acknowledgements will be published in the full report “Observations from India’s Crisis” on wtert.org and blog.wtert.org

Solid Waste Management – India’s Burning Issue

For the first time in the history of India, the year 2012 saw several public protests against improper solid waste management all across India – from the northernmost state Jammu and Kashmir to the southernmost Tamil Nadu. A fight for the right to clean environment and environmental justice led the people to large scale demonstrations, including an indefinite hunger strike and blocking roads leading to local waste handling facilities. Improper waste management has also caused a Dengue Fever outbreak and threatens other epidemics. In recent years, waste management has been the only other unifying factor leading to public demonstrations all across India, after corruption and fuel prices. Public agitation resulted in some judicial action and the government’s remedial response, but the waste management problems are still unsolved and might lead to a crisis if this continues for too long without any long term planning and policy reforms.

Hunger Strike in Kerala

The President of Vilappilsala Village Panchayat went on a hunger strike recently, against her counterpart, the Mayor of Thiruvananthapuram. Thiruvananthapuram is the state capital of Kerala, and Vilappilsala is a village 22 km away. Since July 2000, about 80% of the waste generated in Thiruvananthapuram is being transported to a waste composting plant and a dumpsite in Vilappilsala village. Since the same month, respiratory illnesses reported in Vilappil Primary Health Center increased by 10 times from an average of 450 to 5,000 cases per month. People who used to regularly swim in the village’s aquifer started contracting infections; swarms of flies have ever since been pervasive; and a stigma of filth affected households throughout the community. This was a source of frustration as locals who, as Indians, prize the opportunity to feed and host guests, found them unwilling to even drink a glass of water in their homes. Currently, there is not a single household which has not experienced respiratory illnesses due to the waste processing plant and the adjoining dumpsite.

On the other hand, Thiruvananthapuram’s residents had to sneak out at night with plastic bags full of trash to dispose them behind bushes, on streets or in water bodies, and had to openly burn heaps of trash every morning for months. This was because the waste generated was not being collected by the City as it could not force open the composting plant and dumpsite against large scale protests by Vilappilsala’s residents. This is why in August – 2012, about 2,500 police personnel had to accompany trucks to the waste treatment plant as they were being blocked by local residents lying down on the road, and by some, including the village’s President, by going on an indefinite hunger strike.

Municipal Commissioner Replaced in Karnataka

In response to a similar situation in Bengaluru, the state capital of Karnataka, where the streets were rotting with piles of garbage for months, the municipal commissioner of the city was replaced to specifically address the waste management situation. Against the will of local residents, a landfill which was closed following the orders issued by the state’s pollution control board in response to public agitation had to be reopened soon after its closure as the city could not find a new landfill site.

Mavallipura landfill in Bangalore

Population density and the scale of increasing urban sprawl in India make finding new landfill sites around cities nearly impossible due to the sheer lack of space for Locally Unwanted Land Uses (LULUs) like waste management.

Dengue Outbreak in West Bengal

Even if partially because of improper waste management, Kolkata, state capital of West Bengal and the third biggest city in India experienced a Dengue Fever outbreak with 550 confirmed cases and 60 deaths. This outbreak coincides with a 600% increase in dengue cases in India and 71% increase in malarial cases in Mumbai in the last five years. Accumulation of rain water in non biodegradable waste littered around a city act as a major breeding environment for mosquitoes, thus increasing the density of mosquito population and making the transmission of mosquito related diseases like dengue, yellow fever and malaria easier.

Rabies in Srinagar

Rabies due to stray dog bites already kills more than 20,000 people in India every year. Improper waste management has caused a 1:13 stray dog to human ratio in Srinagar (compared to 1 per 31 people in Mumbai and 1 per 100 in Chennai), where 54,000 people were bitten by stray dogs in a span of 3.5 years. Municipal waste on streets and at the dumpsite is an important source of food for stray dogs. The ultimate solution to controlling stray dogs is proper waste management. The public has been protesting about this stray dog menace for months now with no waste management solutions in sight, but only partial short term measures like dog sterilization.

Note: Acknowledgements will be published in the full report “Observations from India’s Crisis” on wtert.org and blog.wtert.org

Addressing India’s Waste Management Problems

Out of all the measures that are necessary in addressing India’s impending waste management crisis, the most efficient will be changes at the national policy and planning level. It is well known among the small but growing waste management sector that urban India will hit rock bottom due to improper waste management. Unfortunately, they think such a crisis is required to bring about policy changes, as they generally tend to happen only after the damage has been done. This attitude is unfortunate because it indicates a lack of or failed effort from the sector to change policy, and also the level of India’s planning and preparedness.

An average of 32,000 people will be added to urban India every day, continuously, until 2021. This number is a warning, considering how India’s waste management infrastructure went berserk trying to deal with just 25,000 new urban Indians during the last decade. The scale of urbanization in India and around the world is unprecedented with planetary consequences to Earth’s limited material and energy resources, and its natural balance. Rate of increase in access to sanitation infrastructure generally lags behind the rate of urbanization by 33% around the world; however, the lack of planning and impromptu piecemeal responses to waste management issues observed in India might indicate a much wider gap. This means urban Indians will have to wait longer than an average urban citizen of our world for access to proper waste management infrastructure.

The clear trend in the outbreak of epidemic and public protests around India is that they are happening in the biggest cities in their respective regions. Kolkata, Bengaluru, Thiruvananthapuram, and Srinagar are capitals of their respective states, and Coimbatore is the second largest city in Tamil Nadu. However, long term national level plans to improve waste management in India do not exist and guidance offered to urban local bodies is meager. Apart from the Jawaharlal Nehru National Urban Renewal Mission (JnNURM), there has been no national level effort required to address the problem. Even though JnNURM was phenomenal in stimulating the industry and local governments, it was not enough to address the scale and extent of the problem. This is because of JnNURM is not a long term financing program, sorts of which are required to tackle issues like solid waste management.

Are Cities Hands-tied or is Change Possible?

In the short term, municipal corporations have their hands tied and will not be able to deliver solutions immediately. They face the task of realizing waste management facilities inside or near cities while none of their citizens want them near their residences. Officials of Hyderabad’s municipal corporation have been conducting interviews with locals for about eight years now for a new landfill site, to no avail. In spite of the mounting pressure, most corporations will not be able to close the dumpsites that they are currently using. This might not be the good news for which local residents could be waiting, but, it is important that bureaucrats, municipal officials and politicians be clear about it. Residents near Vellalore dump protested and blocked roads leading to the site because Coimbatore municipal officials repeatedly failed to fulfill their promises after every landfill fire incident.

Due to lack of existing alternatives, other than diverting waste fractionally by increasing informal recycling sector’s role, closing existing landfills would mean finding new sites.  Finding new landfills in and around cities is nearly impossible because of the track record of dumpsite operations and maintenance in India and the Not in My Backyard (NIMBY) phenomenon. However, the corporations can and should take measures to reduce landfill fires and open burning, and control pollution due to leachate and odor and vector nuisance. This will provide much needed relief to adjacent communities and give the corporations time to plan better. While navigating through an issue as sensitive this, it is of the utmost importance that they work closely with the community by increasing clarity and transparency.

Municipal officials at the meeting repeatedly stressed the issue of scarcity of land for waste disposal, which led to overflowing dumpsites and waste treatment facilities receiving more waste than what they were designed for. Most municipal officials are of the sense that a magic solution is right around the corner which will turn all of their city’s waste into fuel oil or gas, or into recycled products. While such conversion is technologically possible with infinite energy and financial sources, that is not the reality. Despite their inability to properly manage wastes, the majority of municipal officials consider waste as “wealth” when approached by private partners. Therefore, a significant portion of officials expect royalty from private investments without sharing business risk.

Note: Acknowledgements will be published in the full report “Observations from India’s Crisis” on wtert.org and blog.wtert.org

Biodiesel Program in India – An Analysis

The Government of India approved the National Policy on Biofuels in December 2009. The biofuel policy encouraged the use of renewable energy resources as alternate fuels to supplement transport fuels (petrol and diesel for vehicles) and proposed a target of 20 percent biofuel blending (both bio-diesel and bio-ethanol) by 2017. The government launched the National Bio-diesel Mission (NBM) identifying Jatropha curcas as the most suitable tree-borne oilseed for bio-diesel production. The Planning Commission of India had set an ambitious target covering 11.2 to 13.4 million hectares of land under Jatropha cultivation by the end of the 11th Five-Year Plan. The central government and several state governments are providing fiscal incentives for supporting plantations of Jatropha and other non-edible oilseeds. Several public institutions, state biofuel boards, state agricultural universities and cooperative sectors are also supporting the biofuel mission in different capacities.

The biodiesel industry in India is still in infancy despite the fact that demand for diesel is five times higher than that for petrol. The government’s ambitious plan of producing sufficient biodiesel to meet its mandate of 20 percent diesel blending by 2012 was not realized due to a lack of sufficient Jatropha seeds to produce biodiesel. Currently, Jatropha occupies only around 0.5 million hectares of low-quality wastelands across the country, of which 65-70 percent are new plantations of less than three years. Several corporations, petroleum companies and private companies have entered into a memorandum of understanding with state governments to establish and promote Jatropha plantations on government-owned wastelands or contract farming with small and medium farmers. However, only a few states have been able to actively promote Jatropha plantations despite government incentives.

The unavailability of sufficient feedstock and lack of R&D to evolve high-yielding drought tolerant Jatropha seeds have been major stumbling blocks. In addition, smaller land holdings, ownership issues with government or community-owned wastelands, lackluster progress by state governments and negligible commercial production of biodiesel have hampered the efforts and investments made by both private and public sector companies.

The non-availability of sufficient feedstock and lack of R&D to evolve high-yielding drought tolerant Jatropha seeds have been major stumbling blocks in biodiesel program in India. In addition, smaller land holdings, ownership issues with government or community-owned wastelands, lackluster progress by state governments and negligible commercial production of biodiesel have hampered the efforts and investments made by both private and public sector companies.

Another major obstacle in implementing the biodiesel programme has been the difficulty in initiating large-scale cultivation of Jatropha. The Jatropha production program was started without any planned varietal improvement program, and use of low-yielding cultivars made things difficult for smallholders. The higher gestation period of biodiesel crops (3–5 years for Jatropha and 6–8 years for Pongamia) results in a longer payback period and creates additional problems for farmers where state support is not readily available. The Jatropha seed distribution channels are currently underdeveloped as sufficient numbers of processing industries are not operating. There are no specific markets for Jatropha seed supply and hence the middlemen play a major role in taking the seeds to the processing centres and this inflates the marketing margin.

Biodiesel distribution channels are virtually non-existent as most of the biofuel produced is used either by the producing companies for self-use or by certain transport companies on a trial basis. Further, the cost of biodiesel depends substantially on the cost of seeds and the economy of scale at which the processing plant is operating. The lack of assured supplies of feedstock supply has hampered efforts by the private sector to set up biodiesel plants in India. In the absence of seed collection and oil extraction infrastructure, it becomes difficult to persuade entrepreneurs to install trans-esterification plants.

Global Waste to Energy Market

Waste-to-Energy is the use of modern combustion and biochemical technologies to recover energy, usually in the form of electricity and steam, from urban wastes. These new technologies can reduce the volume of the original waste by 90%, depending upon composition and use of outputs. The main categories of waste-to-energy technologies are physical technologies, which process waste to make it more useful as fuel; thermal technologies, which can yield heat, fuel oil, or syngas from both organic and inorganic wastes; and biological technologies, in which bacterial fermentation is used to digest organic wastes to yield fuel.

The global market for waste-to-energy technologies was valued at US$6.2bn in 2012 which is  forecasted to increase to US$29.2bn by 2022. While the biological WTE segment is expected to grow more rapidly from US$1.4bn in 2008 to approximately US$2.5bn in 2014, the thermal WTE segment is estimated to constitute the vast bulk of the entire industry’s worth. This segment was valued at US$18.5bn in 2008 and is forecasted to expand to US$23.7bn in 2014.

The global market for waste to energy technologies has shown substantial growth over the last five years, increasing from $4.83 billion in 2006, to $7.08 billion in 2010 with continued market growth through the global economic downturn. Over the coming decade, growth trends are expected to continue, led by expansion in the US, European, Chinese, and Indian markets. By 2021, based on continued growth in Asian markets combined with the maturation of European waste management regulations and European and US climate mitigation strategies, the annual global market for waste to energy technologies will exceed $27 billion, for all technologies combined.

Asia-Pacific’s waste-to-energy market will post substantial growth by 2015, as more countries view the technology as a sustainable alternative to landfills for disposing waste while generating clean energy. In its new report, Frost & Sullivan said the industry could grow at a compound annual rate of 6.7 percent for thermal waste-to-energy and 9.7 percent for biological waste-to-energy from 2008 to 2015.

The WTE market in Europe is forecasted to expand at an exponential rate and will continue to do so for at least the next 10 years. The continent’s WTE capacity is projected to increase by around 13 million tonnes, with almost 100 new WTE facilities to come online by 2012. In 2008, the WTE market in Europe consisted of approximately 250 players due in large to the use of bulky and expensive centralized WTE facilities, scattered throughout Western Europe.

Medical Waste Management in Developing Countries

medical-waste-managementHealthcare sector in developing countries is growing at a very rapid pace, which in turn has led to tremendous increase in the quantity of healthcare waste generation by hospitals, clinics and other establishments. The quantity of healthcare waste produced in a typical developing country depends on a wide range of factors and may range from 0.5 to 2.5 kg per bed per day. For example, India generates as much as 500 tons of biomedical wastes every day while Saudi Arabia produces more than 80 tons of healthcare waste daily. The growing amount of medical wastes is posing significant public health and environmental challenges across the world. The situation is worsened by improper disposal methods, insufficient physical resources, and lack of research on medical waste management.

Hazards of Healthcare Wastes

The greatest risk to public health and environment is posed by infectious waste (or hazardous medical waste) which constitutes around 15 – 25 percent of total healthcare waste. Infectious wastes may include items that are contaminated with body fluids such as blood and blood products, used catheters and gloves, cultures and stocks of infectious agents, wound dressings, nappies, discarded diagnostic samples, swabs, bandages, disposal medical devices, contaminated laboratory animals etc.

Improper management of healthcare wastes from hospitals, clinics and other facilities in developing nations pose occupational and public health risks to patients, health workers, waste handlers, haulers and general public. It may also lead to contamination of air, water and soil which may affect all forms of life. In addition, if waste is not disposed of properly, ragpickers may collect disposable medical equipment (particularly syringes) and to resell these materials which may cause dangerous diseases.

Inadequate healthcare waste management can cause environmental pollution, growth and multiplication of vectors like insects, rodents and worms and may lead to the transmission of dangerous diseases like typhoid, cholera, hepatitis and AIDS through injuries from syringes and needles contaminated with human. In addition to health risks associated with poor management of medical waste, healthcare wastes can have deleterious impacts on water bodies, air, soil as well as biodiversity. The situation is further complicated by harsh climatic conditions in many developing nations which makes disposal of medical waste more challenging.

The predominant medical waste management method in the developing world is either small-scale incineration or landfilling. However, the WHO policy paper of 2004 and the Stockholm Convention, has stressed the need to consider the risks associated with the incineration of healthcare waste in the form of particulate matter, heavy metals, acid gases, carbon monoxide, organic compounds, pathogens etc. In addition, leachable organic compounds, like dioxins and heavy metals, are usually present in bottom ash residues. Due to these factors, many industrialized countries are phasing out healthcare incinerators and exploring technologies that do not produce any dioxins. Countries like United States, Ireland, Portugal, Canada and Germany have completely shut down or put a moratorium on medical waste incinerators.

Alternative Treatment Technologies

The alternative technologies for healthcare waste treatment are steam sterilization, advanced steam sterilization, microwave treatment, dry heat sterilization, alkaline hydrolysis, biological treatment and plasma gasification. Nowadays, steam sterilization (or autoclaving) is the most common alternative treatment method. Steam sterilization is done in closed chambers where both heat and pressure are applied over a period of time to destroy all microorganisms that may be present in healthcare waste before landfill disposal. Among alternative systems, autoclaving has the lowest capital costs and can be used to process up to 90% of medical waste, and are easily scaled to meet the needs of any medical organization.

Advanced autoclaves or advanced steam treatment technologies combine steam treatment with vacuuming, internal mixing or fragmentation, internal shredding, drying, and compaction thus leading to as much as 90% volume reduction. Advanced steam systems have higher capital costs than standard autoclaves of the same size. However, rigorous waste segregation is important in steam sterilization in order to exclude hazardous materials and chemicals from the waste stream.

Microwave treatment is a promising technology in which treatment occurs through the introduction of moist heat and steam generated by microwave energy. A typical microwave treatment system consists of a treatment chamber into which microwave energy is directed from a microwave generator. Microwave units generally have higher capital costs than autoclaves, and can be batch or semi-continuous.

Chemical processes use disinfectants, such as lime or peracetic acid, to treat waste. Alkaline digestion is a unique type of chemical process that uses heated alkali to digest tissues, pathological waste, anatomical parts, or animal carcasses in heated stainless steel tanks. Biological processes, like composting and vermicomposting, can also be used to degrade organic matter in healthcare waste such as kitchen waste and placenta.

Plasma gasification is an emerging solution for sustainable management of healthcare waste. A plasma gasifier is an oxygen-starved reactor that is operated at the very high temperatures which results in the breakdown of wastes into hydrogen, carbon monoxide, water etc. The main product of a plasma gasification plant is energy-rich syngas which can be converted into heat, electricity and liquids fuels. Inorganic components in medical wastes, like metals and glass, get converted into a glassy aggregate.

Circular Economy: Past, Present and Future

Circular-EconomyFor a society accustomed to the achievements of a linear economy, the transition to a circular system is a hard task even to contemplate. Although the changes needed may seem daunting, it is important to remember that we have already come a long way. However, the history of the waste hierarchy has taught that political perseverance and unity of approach are essential to achieving long term visions in supply chain management.

Looking back, it is helpful to view the significance of the Lansink’s Ladder in the light of the sustainability gains it has already instigated. From the outset, the Ladder encountered criticism, in part because the intuitive preference order it expresses is not (and has never been put forward as) scientifically rigorous. Opposition came from those who feared the hierarchy would impede economic growth and clash with an increasingly consumerist society. The business community expressed concerns about regulatory burdens and the cost of implementing change.

However, such criticism was not able to shake political support, either in Holland where the Ladder was adopted in the Dutch Environmental Protection Act of 1979, or subsequently across Europe, as the Waste Hierarchy was transposed into national legislation as a result of the revised Waste Framework Directive. Prevention, reuse and recycling have become widely used words as awareness has increased that our industrial societies will eventually suffer a shortage of raw materials and energy. So, should we see the waste hierarchy as laying the first slabs of the long road to a circular economy? Or is the circular economy a radical new departure?

Positive and negative thinking

There have been two major transitionary periods in waste management: public health was the primary driver for the first, from roughly 1900 to 1960, in which waste removal was formalised as a means to avoid disease. The second gained momentum in the 1980s, when prevention, reuse and recovery came on the agenda. However, consolidation of the second transition has in turn revealed new drivers for a third. Although analysing drivers is always tricky – requiring a thorough study of causes and effects – a general indication is helpful for further discussion. Positive (+) and negative (-) drivers for a third transition may be:

(+) The development of material supply chain management through the combination of waste hierarchy thinking with cradle to cradle eco design;

(+) The need for sustainable energy solutions;

(+) Scarcity of raw materials necessary for technological innovation; and

(+) Progressive development of circular economy models, with increasing awareness of social, financial and economic barriers.

(-) Growth of the global economy, especially in China and India, and later in Africa;

(-) Continued growth in global travel;

(-) Rising energy demand, exceeding what can be produced from renewable sources and threatening further global warming;

(-) Biodiversity loss, causing a further ecological impoverishment; and

(-) Conservation of the principle of ownership, which hinders the development of the so-called ‘lease society’. 

A clear steer

As the direction, scale and weight of these drivers are difficult to assess, it’s necessary to steer developments at all levels to a sustainable solution. The second transition taught that governmental control appears indispensable, and that regulation stimulates innovation so long as adequate space is left for industry and producers to develop their own means of satisfying their legislated responsibilities.

The European Waste Framework Directive has been one such stimulatory piece of legislation. Unfortunately, the EC has decided to withdraw its Circular Economy package, which would otherwise now be on track to deliver the additional innovation needed to achieve its goals – including higher recycling targets. Messrs. Juncker and Timmermans must now either bring forward the more ambitious legislation they have hinted at, or explain why they have abandoned the serious proposals of their predecessors.

Perhaps the major differences between Member States and other countries may require a preliminary two-speed policy, but any differences in timetable between Western Europe and other countries should not stand in the way of innovation, and differences of opinion between the European Parliament and the Commission must be removed for Europe to remain credible.

Governmental control requires clear rules and definitions, and for legislative terminology to be commensurate with policy objectives. One failing in this area is the use of the generic term ‘recovery’ to cover product reuse, recycling and incineration with energy recovery, which confuses the hierarchy’s preference order. The granting of R1 status to waste incineration plants, although understandable in terms of energy diversification, turns waste processors into energy producers benefiting from full ovens. Feeding these plants reduces the scope for recycling and increases CO2emissions. When relatively inefficient incinerators still appear to qualify for R1 status, it offers confusing policy signals for governments, investors and waste services providers alike.

The key role for government also is to set clear targets and create the space for producers and consumers to generate workable solutions. The waste hierarchy’s preference order is best served by transparent minimum standards, grouped around product reuse, material recycling or disposal by combustion. For designated product or material categories, multiple minimum standards are possible following preparation of the initial waste streams, which can be tightened as technological developments allow.

Where the rubber meets the road

As waste markets increase in scale, are liberalised, and come under international regulation, individual governmental control is diminished. These factors are currently playing out in the erratic prices of secondary commodities and the development of excess incinerator capacity in some nations that has brought about a rise in RDF exports from the UK and Italy. Governments, however, may make a virtue of the necessity of avoiding the minutiae: ecological policy is by definition long-term and requires a stable line; day to day control is an impossible and undesirable task.

The road to the third transition – towards a circular economy – requires a new mind-set from government that acknowledges and empowers individuals. Not only must we approach the issue from the bottom-up, but also from the side and above. Consumer behaviour must be steered by both ‘soft’ and ‘hard’ controls: through information and communication, because of the importance of psychological factors; but also through financial instruments, because both consumers and industry are clearly responsive to such stimuli.

Where we see opposition to deposit return schemes, it comes not from consumers but from industry, which fears the administrative and logistical burden. The business community must be convinced of the economic opportunities of innovation. Material supply chain management is a challenge for designers and producers, who nevertheless appreciate the benefits of product lifetime extensions and reuse. When attention to environmental risks seems to lapse – for example due to financial pressures or market failures – then politics must intervene.

Government and industry should therefore get a better grip on the under-developed positive drivers of the third transition, such as eco design, secondary materials policy, sustainable energy policy, and research and development in the areas of bio, info, and nanotechnologies. 

Third time’s the charm

Good supply chain management stands or falls with the way in which producers and consumers contribute to the policies supported by government and society. In order that producers and consumers make good on this responsibility, government must first support their environmental awareness.

The interpretation of municipal duty of care determines options for waste collection, disposal and processing. Also essential is the way in which producer responsibility takes shape, and the government must provide a clear separation of private and public duties. Businesses may be liable for the negative aspects of unbridled growth and irresponsible actions. It is also important for optimal interaction with the European legislators: a worthy entry in Brussels is valuable because of the international aspects of the third transition. Finally, supply chain management involves the use of various policy tools, including:

  • Rewarding good behaviour
  • Sharpening minimum standards
  • Development and certification of CO2 tools
  • Formulation and implementation of end-of-waste criteria
  • Remediation of waste incineration with low energy efficiency
  • Restoration or maintenance of a fair landfill tax
  • Application of the combustion load set at zero

‘Seeing is believing’ is the motto of followers of the Apostle Thomas, who is chiefly remembered for his propensity for doubt. The call for visible examples is heard ever louder as more questions are raised around the feasibility of product renewal and the possibilities of a circular economy.

Ultimately, the third transition is inevitable as we face a future of scarcity of raw materials and energy. However, while the direction is clear, the tools to be employed and the speed of change remain uncertain. Disasters are unnecessary to allow the realisation of vital changes; huge leaps forward are possible so long as government – both national and international – and society rigorously follow the preference order of the waste hierarchy. Climbing Lansink’s Ladder remains vital to attaining a perspective from which we might judge the ways in which to make a circle of our linear economy.

Note: The article is being republished with the permission of our collaborative partner Isonomia. The original article can be found at this link.